
Jaccard Index is a Kernel Huitao Shen

Proposition 1. Jaccard index defined for two finite nonempty setsA,B in a universe Ω with finite elements is a kernel:

J(A,B) =
|A ∩B|
|A ∪B|

. (1)

Proof. We need several preliminary results in order to prove the above proposition.

Lemma 2. Closure properties of kernels:

• If k1 and k2 are kernels, then so is ak1 + bk2 for scalars a, b ≥ 0.

• If k1 and k2 are kernels, then so is k1k2.

See lecture note for a proof.

Lemma 3. If k(x, y) is a kernel bounded from above: maxx,y k(x, y) = maxx k(x, x) < D <∞, then

k′(x, y) =
1

D − k(x, y)
, (2)

is also a kernel.

Proof. Using series expansion:

k′(x, y) =
1

D

∞∑
n=0

(
k(x, y)

D

)n

. (3)

The expansion converges because maxx,y k(x, y) < D. With Lemma 2, k′(x, y) is a kernel. (One might wonder
whether Lemma 2 works for countable infinite many terms. The answer is positive as long as the series converges,
because essentially we only need to prove the positive semi-definiteness of the kernel.)

One last result we need is

Lemma 4. For two nonempty sets A, B with finite elements, k(A,B) = |A∩B| and k(A,B) = |Ā∩ B̄| are kernels.

Proof. Use bit encoding of the set. For k(A,B) = |A∩B|, explicitly construct feature map φ(A) as follows: φ(A) is
a vector such that [φ(A)]i = 1 if i-th element is in A and [φ(A)]i = 0 otherwise. Then k(A,B) = φ(A)Tφ(B). For
k(A,B) = |Ā ∩ B̄|, use ψ = 1− φ as the feature map.

Note A ∪B = Ā ∩ B̄, where Ā ≡ Ω−A is the complement of set A. It follows |A ∪B| = |Ω| − |Ā ∩ B̄|. Using
Lemma 3 and 4, 1/|A ∪B| is a kernel. Then using Lemma 2 again, |A ∩B|/|A ∪B| is a kernel.

Remark. What is the feature map of the Jaccard index? It should be very hard to write down explicitly. Let us take a
step back and consider the feature map of k(A,B) = 1/|A ∪B|, which is also proved to be a kernel:

k(A,B) =
1

|A ∪B|
=

1

|Ω| − |Ā ∩ B̄|
=

1

|Ω|

∞∑
n=0

(
|Ā ∩ B̄|
|Ω|

)n

. (4)

Since we already know the feature map of |Ā∩ B̄| as ψ, the feature map of |Ā∩ B̄|n can simply be the tensor product
ψ⊗n in a |Ω|n-dimensional space. Because the infinite summation is involved, the feature mapping of 1/|A ∪ B| is
also in a countable infinite dimensional space:

ϕ =
1√
|Ω|

∞∑
n=0

ψ⊗n√
|Ω|n

, (5)

where the summation is the direct sum.
With the feature map of |A ∩B|: φ (finite-dimensional) and 1/|A ∪B|: ϕ (infinite-dimensional), the feature map

of Jaccard index can be constructed similarly using tensor product: φ ⊗ ϕ and is infinite-dimensional. Note that this
construction does not necessarily exclude a finite-dimensional feature map because feature map is not unique.
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Proposition 5. Jaccard index defined for two finite nonempty sets A, B in a universe Ω with infinite elements is a
kernel:

J(A,B) =
|A ∩B|
|A ∪B|

. (6)

Proof. Now since maxx k(x, x) = |Ω| =∞, we cannot use Lemma 3. The work around is to use another representa-
tion of |A ∪B| and the following lemma:

Lemma 6. The following index for two nonempty sets A,B is a kernel:

H(A,B) =
1

|A|+ |B|
. (7)

Proof. According to Mercer’s theorem, we need to prove its positive semi-definiteness. In particular, it suffices to
prove any n × n matrix M , where n ∈ N and Mi,j = 1/(i + j) is positive semi-definite. This is exactly a Hilbert
matrix and its positive semi-definiteness is well-known. To prove this fact, for all ci, cj :

n∑
i,j=1

ciMi,jcj =

n∑
i,j=1

cicj
i+ j

=

n∑
i,j=1

cicj

∫ 1

0

ti+j−1dt =

∫ 1

0

t

(
n∑

i=1

cit
i−1

)2

dt ≥ 0. (8)

Hence we have proved H(A,B) is a kernel. Note that one can also use another trick 1/(i+ j) =
∫ +∞
0

e−(i+j)tdt in
the proof.

Decompose |A ∪B| as

1

|A ∪B|
=

1

|A|+ |B| − |A ∩B|
=

1

|A|+ |B|
1

1− |A∩B|
|A|+|B|

=
H(A,B)

1−H(A,B)|A ∩B|
. (9)

Using Lemma 2, 3, 4 and 6, 1/|A ∪ B| is a kernel even if the universe Ω has infinite elements. Then use Lemma 2
again, J(A,B) is a kernel.
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