Exponential Kernel is a Kernel Huitao Shen

Proposition 1. Exponential kernel (also called Laplace kernel) k(x,y) = e~ x=Yl where v > 0 and x,y € R% is
a kernel.

Proof. The idea is to represent exponential kernel as a non-negative linear combination of Gaussian RBF kernels. To
do this formally, we resort to inverse Laplace transform:

Lemma 2. The inverse Laplace transform of e~ V" is
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This can be computed directly using Bromwich integral, which can be found in most complex analysis textbooks[ﬂ
Because the integrand is non-negative when ¢ € [0,+00), k(x,y) can be expressed as a non-negative linear
combination of Gaussian RBF kernels:
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Due to the closure property of kernels, exponential kernel is a kernel.
Strictly speaking, the “linear combination” is an integral. To be mathematically rigorous, one can further Fourier
transform the Gaussian RBF kernel, as it only depends on x — y:
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Lemma 3. The Fourier transform of a Gaussian is a Gaussian:
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Therefore the exponential kernel is positive semi-definite and is indeed a kernel. 0

The key in the above proof is that the Fourier transform of the exponential kernel is non-negative. To obtain the
Fourier transform of the exponential kernel, we first compute its inverse Laplace transform and represent the result as
an integral over ¢. In this way, our proof can be easily generalized to the following proposition

Proposition 4. If a function ©(s) has a non-negative inverse Laplace transform, i.e.
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wu(t) > 0fort € [0,+00), then k(x,y) = o(||x — y||?), where x,y € R? is a kernel.

I'See also, for example [this Mathematics Stack Exchange page]


https://math.stackexchange.com/a/348021/62116

For example, because the inverse Laplace transform of ¢(s) = (1 + s) ™1 is u(t) = e~, using Proposition
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is a kernel. Similarly, the inverse Laplace transform of ¢(s) = (1 + +/s) ! is also non-negative, because
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where we have used Lemma[2] Therefore,
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k(X,y) = 1+||X—y||’
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is also a kernel.

Before concluding, we note that the inverse of Proposition [] is also true, although the proof is much more non-
trivial. We have the following characterizations of positive definite functions (note that all three theorems below are
stated with “if and only if”’), which were proved in the 1930s:

Definition 1 (Positive Definite Function). A function ®(x) : R? — C is positive definite if for all n € N and
X1,...,X, € R the matrix M, where M,; = ®(x; — x;), is positive semi-definite.

Theorem 5 (Bochner). A function ®(x) : R® — C is positive definite if and only if it has non-negative Fourier
transform on R,

The above theorem characterizes all translation invariant positive definite functions. For radial functions, i.e.
®(x) = (]|x]]), we have further characterizations:

Definition 2 (Complete Monotone Function). A function on ¢ : [0, +00) — R is complete monotone on [0, +00) if
it is continuous on [0, +00), infinitely differentiable on (0, +00), and satisfies
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foralln € Nand r > 0.

Theorem 6 (Schoenberg). A function ¢(r) is complete monotone on [0, +o0) if and only if ® = (||x||?) is positive
definite on R¢ for all d.

Theorem 7 (Hausdorff-Bernstein-Widder). A function ¢ : [0,4+00) — R is complete monotone on [0, +0o0) if and
only if it has non-negative Laplace transform on [0, +00).



