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1 Introduction
Recall that in generative models,

• Model distributions: p(z), p(x|z).

• Target distributions: p(x) or ∂p(x)/∂θ for training; p(z|x) for inference. Both distributions are typically in-
tractable.

How to deal with intractable p(x) or p(z|x)?

• Approach 1: Variational Inference

Use q(z|x;φ) ≈ p(z|x) for approximate inference, which can be trained as a byproduct as ELBO maximization,
because

ln p(x)− Ez∼q(z|x)

[
ln
p(x, z)

q(z|x)

]
︸ ︷︷ ︸

ELBO

= KL (q(z|x)||p(z|x)) . (1)

We have talked about this approach in last week’s recitation. The method is biased because in most scenarios
q(z|x) 6= p(z|x).

• Approach 2: Sampling

The idea of sampling is very straightforward—to approximate the intractable summation (or integration if z is
continuous) with finite samples:

p(x) =
∑
z

p(x|z)p(z) = Ez∼p(z) [p(x|z)] ≈
1

N

N∑
i=1

p(z(i)|x)︸ ︷︷ ︸
p̂(x)

, (2)

where z(1), . . . , z(N) ∼ p(z) independently. p(z|x) can be sampled similarly. The method is unbiased and its
correctness is guaranteed by central limit theorem. However, the approximation, i.e. estimator p̂(x), potentially
has a large variance when the sample size is small. In the following, we will focus on different sampling
techniques that reduce the variance.

Thanks to the strong expressive power of neural networks, the bias in variational inference can be really small,
while the variance in sampling methods is still annoyingly big. Therefore, to date the variational inference is more
popular than sampling in dealing with intractable distributions. Nevertheless, we should still learn these sampling
methods because it is possible one could find an efficient sampling method in the future with the helpful of neural
networks (this is actually an active research area). Perhaps more importantly, these algorithms are extremely powerful
and useful on their own.
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2 Sampling Techniques

2.1 Importance Sampling (Exercise 10, Problem 2)
Instead of sampling p(z), one can sample from a proposal distribution q(z|x):

p(x) =
∑
z

p(x|z)p(z) =
∑
z

p(z)

q(z|x)
q(z|x)q(z|x) = Ez∼q(z|x)

[
p(z)

q(z|x)
p(x|z)

]
, (3)

By construction, q(z|x) ≈ p(z)p(x|z) and it is not hard to see the variance of the estimator is zero if q(z|x) =
p(z)p(x|z) exactly.

The problem with importance sampling is that if q(z|x) undershoots p(z)p(x|z), the variance will be very large and
potentially infinity. When the dimension of z is high, this will almost always happen unless we have an exceptionally
good proposal distribution, which is only possible for few well-known target distributions. Therefore, importance
sampling is usually very unstable at high dimensions.

Finally, note that importance sampling is not restricted to sampling margin distribution p(x) = Ez∼p(z)[p(x|z)],
but can be used to sample a generic expectation.

2.2 Markov Chain Monte Carlo (MCMC)
A Markov chain is a series of random variables {z(t), t ∈ N}, such that p(z(t+1)|z(t), . . . , z(0)) = p(z(t+1)|z(t)). In
other words, the transition probability from the current state z(t) to the next state z(t+1) only depends on the current
state, but not the state history. This Markov property is thus also called “memoryless” property.

The idea of MCMC sampling is to construct a Markov chain, such that the stationary distribution of the Markov
chain is the same as the target distribution.

2.2.1 Metropolis-Hastings

In Metropolis-Hastings algorithm, there is a proposal distribution q(z′|z), and an acceptance rate

p(z → z′) = min

(
1,
q(z|z′)
q(z′|z)

p(z′)

p(z)

)
. (4)

Starting from the current state z(t), one first samples a proposed state z′ from q(z′|z(t)), then accepts it to be z(t+1)

with probability p(z(t) → z′). If z′ is not accepted, z(t+1) = z(t).
It can be proved that with the above acceptance rate (and other technical requirements such as ergodicity), station-

ary distribution of the Markov chain is the same as the target distribution π(z) = p(z).
The advantage of Metropolis-Hastings algorithm is that it is very generic. In fact, it is regarded as the single most

important algorithm in the 20th century. In order to use it, one only needs to know unnormalized probability density,
because only the ratio p(z′)/p(z) appears in (4). This is extremely useful in the context of probabilistic models because
the posteriors or marginals are intractable exactly due to the normalization factor. According to Bayes theorem, for
fixed x, the posterior is proportional to the joint likelihood p(z|x) = p(x|z)p(z)/p(x) ∝ p(x|z)p(z), which can be
easily sampled with Metropolis-Hastings algorithm.

The disadvantage of Metropolis-Hastings is that the convergence of the Markov chain can be very slow—a price
we always need to pay for a generic algorithm. Even worse, it is also hard to assess convergence. In many scenarios,
we don’t know in prior about the complicated, high-dimensional distribution p(z), so the best choice of the proposal
distribution is simply the uniform distribution. In these cases, (4) simplifies to p(z → z′) = min (1, p(z′)/p(z)).
When the density ratio is small, the acceptance rate is also small. Now consider a multimodal distribution. It is
difficult to make a transition from one mode to another because the density ratio from a mode to the region that
connects different modes is very small. It is thus very easy for the Markov chain to get stuck in one of the modes, and
we would never know whether there is a single mode or more than one mode in the target distribution.
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2.2.2 Gibbs Sampling

Gibbs sampling is a special case of Metropolis-Hastings algorithm when the dimensional of z is high. It samples each
component of z in turn while fixing remaining components. For example, consider z ∈ R3. An iteration of Gibbs
sampling includes the following three samplings:

• z(t+1)
1 ∼ p(z1|z(t)2 , z

(t)
3 );

• z(t+1)
2 ∼ p(z2|z(t+1)

1 , z
(t)
3 );

• z(t+1)
3 ∼ p(z3|z(t+1)

1 , z
(t+1)
2 ).

To proof its correctness, first denote z¬k as all components of z except for k-th component zk. Gibbs sampling
corresponds to Metropolis-Hastings with proposal distribution q(z|z′) ≡ p(zk|z′¬k). It follows

q(z|z′)
q(z′|z)

p(z′)

p(z)
=
p(zk|z′¬k)
p(z′k|z¬k)

p(z′k|z′¬k)p(z′¬k)
p(zk|z¬k)p(z¬k)

= 1, (5)

where we have used the important fact that z′¬k = z¬k. Therefore, the acceptance rate is always one, justifying Gibbs
sampling.

The advantage of Gibbs sampling is that it potentially converges faster than a generic Metropolis-Hastings algo-
rithm, at the cost that one needs to know the conditional probability p(zk|z¬k) exactly (NOT only up to a normalization
factor). One should also be cautious about ergodicity breaking. A single example of a bimodal distribution with z ∈ R2

is constructed in Exercise 10, Problem 4.
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