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1 Canonical Ensemble

1.1 Derivation from Microcanonical Ensemble
According to the fundamental assumption of statistical mechanics, each quantum state in an isolated system is equal
probable in the (microcanonical) ensemble. We would like to know what is the probability of a quantum state in a
system that is not isolated, but in thermal equilibrium with a heat bath / reservoir.

Consider a system that is in contact with a heat bath. Energy is free to transfer between the system and the bath.
The system has energy E1 and the bath has energy E2. Assume the heat bath is much larger than the system such
that E2 � E1 (since energy is an extensive quantity). The system and the bath as a whole is an isolated system with
energy E = E1 + E2. Therefore, we can apply the principles of microcanonical ensemble. The probability that the
system is in a state with energy E1 is

P1(E1) =
Γ2(E − E1)

Γ(E)
=

exp
(
S2(E−E1)

kB

)
Γ(E)

, (1)

where Γi(E), i = 1, 2 is the number of states in the energy range (E,E+δE) in the system and in the bath respectively.
Si(E), i = 1, 2 is the entropy of the system and the bath respectively. We have used the definition of entropy
S = kB ln Γ.

Since E > E2 � E1, we can expand S2 around E:

S2(E − E1) ≈ S2(E)− ∂S2

∂E
E1. (2)

Here we define the temperature T to be
1

T
≡ ∂S2

∂E
. (3)

It is not yet clear what is the physical significance of this quantity (namely, the first order derivative of entropy with
respect to energy). But we will see very soon below.

Insert Eq. (2) and (3) back into (1). we have

P1(E1) =
exp

(
S2(E)
kB

)
exp

(
− E1

kBT

)
Γ(E)

=
1

Z
exp

(
− E1

kBT

)
. (4)

Note that only E1 is the variable of interest. The remaining E1 independent terms can be summarized as 1/Z, which
is the normalization factor of the probability distribution P1. It is chosen such that

∑
n P1(E1,n) = 1. Here E1,n is

the energy of the n-th state of the system. It is not hard to see

Z =
∑
n

exp

(
−E1,n

kBT

)
=
∑
n

exp (−βE1,n) . (5)

Equation (4) is called the Boltzmann distribution. β is a common notation for the inverse temperature β ≡ 1/kBT .

1.2 Partition Function and Helmholtz Free Energy
The quantity Z we defined in Eq. (5) is not only a normalization factor, but also has deep physical meaning. To see
this,

Z =
∑
n

e−βE1,n (6)

=

∫ +∞

−∞
dE
∑
n

δ(E − E1,n)e−βE (7)

=

∫ +∞

−∞
dEe−β(E−TS1(E)), (8)
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where δ(x) is the Dirac delta function. We have used the fact that∑
n

δ(E − E1,n) = Γ1(E) = eS1(E)/kB . (9)

In the following, we drop the subscript 1 in the entropy when S is clearly referred to the entropy of the system.
Both E and S are extensive quantities, i.e. E,S ∝ N . They are overwhelmingly large in a typical system where

N ∼ 1023. This allows us to use the saddle point approximation to simplify the integral.
The saddle point approximation is a general method to approximate integrals of the following form

I =

∫ +∞

−∞
dxe−f(x) ≈

∫ +∞

−∞
dxe−f(x0)− 1

2 f
′′(x0)(x−x0)

2

= e−f(x0)

√
2π

f ′′(x0)
, (10)

where we have expanded f(x) around the saddle point x0, i.e., the point where f ′(x0) = 0. The approximation is
valid because if the exponential decays so fast around its minimum that only its value around the minimum contributes
significantly to the integral.

Insert Eq. (10) into (8), and denote F (E) = E − TS(E), we have

Z = e−βF (E0)

√
2π

−T ∂2S
∂E2 (E0)

, (11)

where E0 is the solution to

F ′(E0) = 1− T ∂S
∂E

(E0) = 0. (12)

We make several comments to the above result:

1. Physically, the saddle point approximation means the Boltzmann distribution is extremely sharply peaked. Av-
eraging over states with the most probable energy is as good as averaging over all the states.

2. Combining Eq. (12) with (3), it follows
1

T
=
∂S2

∂E
=
∂S1

∂E
. (13)

Therefore T is indeed the usual thermodynamic temperature: Two systems that are in thermal equilibrium share
the same temperature.

3. Note that F (T ) = E0(T ) − TS(E0(T )) = F̃ (T,E0(T )) is exactly the Helmholtz free energy. (Here we have
slightly abused the notation. WhenE0 is fixed by Eq. (12), F is ultimately a function of T . F̃ (x, y) = y−xS(y)
is a formal expression of F to emphasize the functional form and the variable dependency of F . ) The system
minimizes the free energy to reach the thermal equilibrium.

4. Taking the logarithm of both sides of Eq. (11),

lnZ = −βF +
1

2
ln(2π)− 1

2
ln

(
−T ∂

2S

∂E2

)
. (14)

Since F is extensive F ∝ N while ∂2S/∂E2 ∝ 1/N , we can neglect the last two terms. We end up having

F = − 1

β
lnZ = −kBT lnZ. (15)

Partition function is directly related to the free energy of the system.
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2 Thermodynamic Quantities

2.1 Thermodynamic Approach
We can compute all the thermodynamic quantities from the state function of the system. Below is some standard
exercises in the thermodynamics.

In the microcanonical ensemble, the state function is the entropy S(U, V ). We already know the temperature is
defined as

T =

(
∂S

∂U

)−1
V

. (16)

To compute the pressure of the system, consider an adiabatic expansion process,

0 = dS =

(
∂S

∂U

)
V

dU +

(
∂S

∂V

)
U

dV =

[
− p
T

+

(
∂S

∂V

)
U

]
dV, (17)

where we have used the fact dU = −pdV . Thus

p = T

(
∂S

∂V

)
U

. (18)

In the canonical ensemble, the state function is the free energy F (T, V ). Let us first compute the its first order
derivatives, (

∂F

∂T

)
V

=

(
∂F̃

∂E

)
T,V

∣∣∣∣
E=E0

dE

dT
+

(
∂F̃

∂T

)
V

= −S, (19)

(
∂F

∂V

)
T

=

(
∂F̃

∂E

)
T,V

∣∣∣∣
E=E0

dE

dV
+

(
∂F̃

∂V

)
T

= −T
(
∂S

∂V

)
E

= −p. (20)

This can be summarized by the familiar differential relation dF = −SdT − pdV .
The total energy of the system can be computed by

E0 = F + TS(E0, V ) = F − T
(
∂F

∂T

)
V

. (21)

Finally, let us compute one of the second order derivatives. The heat capacity of the system is

CV =

(
∂E

∂T

)
V

=

(
∂F

∂T

)
V

+ S + T

(
∂S

∂T

)
V

= T

(
∂S

∂T

)
V

. (22)

2.2 Statistical Approach
The thermodynamic quantities can also be computed directly from the ensemble. The expectation value of any quantity
X , denoted as 〈X〉 can be computed directly by

〈X〉 =
∑
n

XnPn, (23)

where Pn = e−βEn/Z is the Boltzmann distribution.
As an example, we compute the expectation of the energy:

〈E〉 =
∑
n

EnPn =
∑
n

Ene
−βEn

Z
=
∑
n

− ∂
∂β e
−βEn

Z
=
− ∂
∂βZ

Z
= − ∂

∂β
lnZ. (24)
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To see Eq. (24) is equivalent to (21), insert Eq. (15). It follows

〈E〉 = − ∂

∂β
lnZ = − ∂

∂β
βF = F + β

∂F

∂β
= F − T ∂F

∂T
= E0. (25)

This is within our expectation since the Boltzmann distribution is sharply peaked. The most probable energy should
be the same as the average energy.

2.3 Example: Quantum Harmonic Oscillator
The energy level of a quantum harmonic oscillator is

En =

(
n+

1

2

)
~ω, (26)

where n = 0, 1, 2, . . .. Let us assume the oscillator is in thermal equilibrium with a heat bath of temperature T . The
partition function is

Z =

∞∑
n=0

e−βEn = e−βε/2
∞∑
n=0

e−nβε =
e−βε/2

1− e−βε
=

1

2 sinh(βε/2)
, (27)

where we have defined ε ≡ ~ω. Straightforward computation gives the energy expectation

〈E〉 = −∂ lnZ

∂β
=
ε

2
coth

(
βε

2

)
, (28)

and the heat capacity

CV =
∂〈E〉
∂T

= kB

(
βε

2

)2
1

sinh2
(
βε
2

) = kB

(
ε

2kBT

)2
1

sinh2
(

ε
2kBT

) . (29)

Although the final result looks complicated, it is worthwhile to consider two limits:

• Low temperature kBT � ε. When x � 1, sinhx ≈ ex/2. Therefore CV ∼ kB exp(−ε/kBT ) decays
exponentially with inverse temperature.

• High temperature kBT � ε. When x� 1, sinhx ≈ x. Therefore CV ∼ kB is a constant.

The plot of CV as a function of kBT/ε confirms the above results.
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3 Energy Cost of Information

3.1 Flexible Chain
Consider a flexible chain withN links. Each link can independently point right or left. There is no interaction between
the links. The length of the chain is L = NR −NL, where NR/L is the number of links pointing right/left.

Although the chain has zero internal energy, it does have entropy as a function of the chain length L. Let us
consider two limits.

• L = 0. In this case NR = NL = L/2. The entropy is

S(L = 0) = kB ln
N !

NR!NL!
= kB

(
N lnN − 2

N

2
ln
N

2

)
= kBN ln 2, (30)

where we have used the Stirling approximation lnN ! ≈ N lnN .

• L = N . In this case NR = N and NL = 0. The entropy is S(L = N) = kB ln 1 = 0.

Now, suppose the chain is in thermal equilibrium with a heat bath of temperature T . What is the energy cost of
stretching the chain from L = 0 to L = N , assuming the stretching is a reversible process such that during the whole
process the chain is in thermal equilibrium with the bath? The answer is that

∆Ebath = T∆Sbath = kBTN ln 2. (31)

It is the same as the free energy change of the system:

∆F = F (N)− F (0) = T (S(0)− S(N)) = kBTN ln 2. (32)

We make several comments to the above result:

1. There is an energy cost of information (decreasing the entropy);

2. The system tends to lower the free energy by shrinking;

3. When stretching the chain, there is effectively a restoring force f ≡ −∂F/∂L. This type of force is called the
“entropic force”.

3.2 Hard Disk
Setting a random bit on the hard disk to a particular value decreases the entropy of the hard disk by kB ln 2, which
costs free energy kBT ln 2 if the hard disk is in thermal equilibrium with temperature T . This sets a theoretical power
consumption bound for information writing.

A typical today’s hard disk has power about P = 1W. By the above bound, at room temperature it can write

N =
P

kBT ln 2
∼ 1

1.38× 10−23 · 300 · 0.7
∼ 1022bit/s ∼ 108TB/s. (33)

While in reality the writing speed is of order 1GB/s. There is huge room for improving the efficiency of our hard disks.
The similar principle is also applicable to irreversible computation.
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