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1 Non-interacting Fermi Gas
For non-interacting Fermi gas, we have the grandpartition function

Ξk =

1∑
n=0

e−βn(εk−µ) = 1 + e−β(εk−µ), (1)

and the Fermi-Dirac distribution of particle numbers:

〈nk〉 =
∂ ln Ξk

∂(βµ)
=

1

eβ(εk−µ) + 1
. (2)

In the following, we will restrict ourselves to three-dimensional particles with quadratic dispersion: Ek = ~2k2/2m.
The total particle number is given by:

N =
∑
k

nk = V

∫
d3k

(2π)3
1

e−(Ek−µ)/kBT + 1
, (3)

which very similar to the case of bosons, become the density and chemical potential relation:

nλ3T = f3/2(z), (4)

where λT = h/(2πmkBT )1/2 is the thermal wavelength, z = eβµ is the fugacity and a special function

fν(z) =
1

Γ(ν)

∫ +∞

0

xν−1

ex/z + 1
dx, (5)

whose shape is plotted below. Its asymptotic behavior is

f3/2(z) ≈

{
z − 2−2/3z2, z � 1,
4

3
√
π

(ln z)3/2
(

1 + π2

8 (ln z)−2
)
, z � 1.

(6)

Figure 1: Plot of f3/2(z) defined in Eq. (5).

One should be cautious that in general µ should be solved according to Eq. (4), and is temperature dependent.
Therefore, it is not very straightforward what the physical meaning of large or small z limit is.

Let us first focus on the low temperature limit, where µ ∼ EF and βµ � 1. Therefore, we are working in the
large z limit. Using the large z asymptotic behavior, Equation (4) becomes

n

(
h2

2πmkBT

)3/2

=
4

3
√
π

(
µ

kBT

)3/2

, (7)
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which finally reduces to

µ =
~2k2F
2m

, kF = (6π2n)1/3, (8)

which is identical to the Fermi energy EF .
We now study the high temperature limit. The L.H.S. of Eq. (4) can be as small as possible, in which case the

R.H.S. must be z � 1. This can only be possible if µ < 0. Indeed, use the small z asymptotic behavior, Equation (4)
becomes nλ3T = z, which leads to (

T0
T

)3/2

= f3/2(z) ≈ z, (9)

and
µ = kBT ln(nλ3T ) ∼ −3

2
T lnT, (10)

In Figure 2 we plot the numerical solution of µ(T ), which is consistent with our analysis in both limits.

Figure 2: Chemical potential as a function of the temperature. Here T0 = n(h2/2πmkB)3/2.

Now we are ready to discuss how does Fermi-Dirac distribution become classical. If one naively sets T →∞ and
ignores the temperature dependence of the chemical potential, the result will be wrong:

lim
T→+∞

1

e(E−µ)/kBT + 1
=

1

2
. (11)

Take the temperature dependence of chemical potential into account:

nF (E) =
1

eE/kBT /z + 1
∼ 1

eE/kBTT 3/2/T
3/2
0 + 1

∼ T−3/2. (12)

The additional T 3/2 factor due to the chemical potential is vital. Because the denominator is large, the +1 term can be
neglected and the Fermi-Dirac distribution becomes classical Boltzmann distribution. Physically, when the probability
for a state to be occupied is much smaller than one, the Pauli exclusion principle will not be effective and there is no
difference between quantum and classical.

2 Relativistic Fermi Gas
Consider a relativistic Fermi gas in three dimensions, whose dispersion is given by

Ek =
√

~2c2k2 +m2c4 −mc2. (13)

There are three energy scales in the problem: Temperature kBT , Fermi energy EF , Relativistic energy mc2. which
comes from state counting in the momentum space. No complicated calculation involving density of states is needed.
In this case, when we talk about high temperature, it is not clear what this means exactly.
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We first consider classical and quantum transition. Quantum limit is when kBT � EF . As is discussed in the
previous section, in this case, the Fermi-Dirac distribution and Boltzmann distribution are essentially the same.

We then consider non-relativistic and relativistic transition. From the dispersion point of view,

Ek ∼

{
~2k2

2m , ~k � mc,

~c|k| −mc2, ~k � mc.
(14)

The particle essentially has a quadratic dispersion In the non-relativistic limit and has a linear dispersion in the rela-
tivistic limit. In this way, the relativistic limit is when kBT � mc2 or EF � mc2. For the former case, there are so
many particles are excited with linear dispersion that we can effectively treat the particle to have linear dispersion. For
the latter case, only particles near EF are excited, which all have linear dispersion.

We are now ready to draw the T ∼ n “phase” diagram for relativistic Fermi gas. Fermi energy is related to the
particle density as

kF = (6π2n)1/3, (15)

so that
EF
mc2

=

√(
n

n0

)2/3

+ 1− 1, n0 =
4π

3

(mc
h

)3
. (16)

Classical

QuantumNon-relativistic
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Figure 3: “Phase diagram” of relativistic Fermi gas.

Note that there are actually no phase transitions at all and all lines only indicate crossovers, i.e. a continuous
transition even in the thermodynamic limit.

3 Absorption of Fermi Gas
Consider a three-dimensional Fermi gas with quadratic dispersion. There areN such molecules in thermal equilibrium
with N impurity sites. Each site can host at most one fermion molecule and the binding energy of the impurity site is
−ε. It is not hard to see

Nf =V

∫
dk

eβ(Ek−µ) + 1
=

V

λ3T
f3/2(z), (17)

Nb =
N

e−β(ε+µ) + 1
, (18)

and the chemical potential is determined by

N = Nf +Nb =
V

λ3T
f3/2(z) +

N

e−β(ε+µ) + 1
, (19)
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which transfers to
nλ3T = (1 + eβεz)f3/2(z). (20)

One should again be cautious about the meaning of “high” or “low” temperature, as there are three energy scales:
kBT , EF and ε in the problem.

Consider z � 1 limit, to the quadratic order of z:

nλ3T ≈ (1 + eβεz)(z − 2−3/2z2) ≈ z + (eβε − 2−3/2)z2, (21)

which gives the solution

z =

√
4nλ3T (eβε − 2−3/2) + 1− 1

2(eβε − 2−3/2)
. (22)

Note that according to the solution, z � 1 if nλ3T � 1 or eβε � 1.

• High temperature nλ3T � 1.

nf ≈
z

λ3T
≈ 1

λ3T

√
4nλ3T (eβε − 2−3/2) + 1− 1

2(eβε − 2−3/2)
≈ n, (23)

which makes sense as at high temperature we expect most particles are not absorbed.

• Low temperature eβε � 1.

nf ≈
z

λ3T
≈ 1

λ3T

√
4nλ3T (eβε − 2−3/2) + 1− 1

2(eβε − 2−3/2)
≈
√
nλ−3T e−βε/2, (24)

which is expected because at exactly the ground state all particles will occupy negative energy impurity states.

It is very important to notice both high and low temperature corresponds to the z � 1 limit, due to the nontrivial
temperature dependence of the chemical potential. The numerical solution of Eq. (20) is given in the figure below,
which is consistent with our analysis above.

Figure 4: Fugacity z as a function of the temperature. Here T0 = n(h2/2πmkB)3/2.
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