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1 Lattice Random Walk

1.1 One Dimension
Consider the random walk on an one-dimensional lattice. At each time step, the particle jumps to the right with
probability q and left with probability 1 − q. The distance of each jump is l. In the context of kinetics, l is the mean
free path.

Denote xn as the movement at n-th step. By definition, xn is a Bernoulli random variable xn ∼ Ber(p). Different
xn, n ∈ N are independent. The position of the particle after N steps is xN =

∑N
i=1 xi. By the linearity of the

expectation:

µN ≡ 〈xN 〉 =

N∑
i=1

〈xi〉 = N〈x1〉 = N [ql − (1− q)l] = Nl(2q − 1). (1)

For a symmetric random walk q = 1/2, µN = 0 due to the symmetry.
To compute the variance of xN ,

〈x2N 〉 =

〈(
N∑
i=1

xi

) N∑
j=1

xj

〉 =

N∑
i,j=1

〈xixj〉 (2)

=

N∑
i=1

〈x2i 〉+ 2
∑

1≤i<j≤N

〈xi〉〈xj〉 (3)

=Nl2 +N(N − 1)l2(2q − 1)2. (4)

It follows
σ2
N ≡ 〈x2N 〉 − 〈xN 〉2 = 4Nl2q(1− q), (5)

which is maximized when q = 1/2 and is zero when q = 0 or 1. Note that σ2
N ∼ N instead of N2.

One can also compute the probability mass function of xN . The probability that the particle jumps right k times
among the first N steps is

p(k,N) =

(
N

k

)
pk(1− p)k, (6)

and x is related to k as
x = kl − (N − k)l = (2k −N)l. (7)

Essentially, this is the probability mass function of a binomial random variable, which is the independent sum of
identical Bernoulli random variables.

Perhaps it is more illuminating to consider the N →∞ limit. According to the central limit theorem, xN tends to
distributed normally xN ∼ N (µN , σ

2
N ):

p(x,N) =
1√

2πσN
e
− (x−µN )2

2σ2
N . (8)

This is a Gaussian wave packet, whose center drifts with velocity µN/N = l(2q−1), and whose size spreads out with
time.

We now restrict ourselves to the symmetric/unbiased random walk q = 1/2. The probability that the particle
returns to the origin after 2n steps is:

P (x2n = 0) =
1

22n

(
2n

n

)
∼ 1√

πn
, (9)

where we have used Stirling’s approximation:

n! ∼
√

2πn
(n
e

)n
. (10)
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Define the indicator random variable Xn = 1 if xn = 0. X =
∑∞

i=1Xi counts the total number of returns. Then

〈X〉 =

∞∑
i=1

〈Xi〉 =

∞∑
i=1

P (x2i = 0) ∼ 1√
π

∞∑
i=1

1√
i

=∞, (11)

which diverges.
The expected number of returns 〈X〉 is related to the probability of return. Denote ρ as the probability that the

particle ever returns to the origin, and ρk as the probability that the particle returns to the origin exactly k times.
Obviously

ρk = ρk(1− ρ), (12)

by treating the whole random walk as k + 1 independent random walks. In this way,

〈X〉 =

∞∑
i=1

iρi = (1− ρ)

∞∑
i=1

iρi =
ρ

1− ρ
. (13)

Therefore,

〈X〉 =∞⇔ ρ = 1,

〈X〉 <∞⇔ ρ < 1.

The return probability of one-dimensional symmetric random walk is one ρ1D = 1.

1.2 Higher Dimensions
Random walks in higher dimensions can be treated similarly to the one-dimensional case. In the following, will only
focus on the return probability ρ for symmetric random walks.

In two dimensions, the probability the particle returns to the origin after 2n steps is

P (x2n = 0) =
1

42n

n∑
k=0

(
2n

k

)(
2n− k
k

)(
2n− 2k

n− k

)
(14)

=
1

42n

n∑
k=0

(2n)!

(k!)
2

((n− k)!)
2 (15)

=
1

42n

n∑
k=0

(
2n

n

)(
n

k

)2

(16)

=
1

42n

(
2n

n

) n∑
k=0

(
n

k

)(
n

n− k

)
(17)

=
1

42n

(
2n

n

)2

, (18)

where the particle goes up and down k times and left and right n − k times. In the last line, we use the fact that
choosing n from 2n items can be achieved by dividing 2n items into two piles of n items, then pick k items from the
first pile and n− k from the second.

Notice P (x2n = 0) is exactly the square of its one-dimensional counterpart. Now, the expected number of returns
is

〈X〉 =

∞∑
i=1

P (x2n = 0) ∼ 1

π

∞∑
i=1

1

i
=∞. (19)

Therefore, the return probability of two-dimensional symmetric random walk is also ρ2D = 1.
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In three dimensions, the computation is more complicated. At the end of the day, 〈X〉 is related toC
∑

i=1 1/i3/2 <
∞. Therefore, ρ3D < 1. This result was first proved by Pólya in 1921. In fact, ρ3D ≈ 0.34, and the probability de-
creases with increasing the dimensions1. Random walks with ρ = 1 are called “recurrent”, and those with ρ < 1 are
called “transient”. There is a famous quote by Shizuo Kakutani:

A drunk man will find his way home, but a drunk bird may get lost forever.

2 Continuous Random Walk and Diffusion

2.1 Fokker-Planck Equation
p(x,N) can be derived recursively instead of directly. It is not hard to see

p(x,N + 1) = qp(x− l, N) + (1− q)p(x+ l, N). (20)

This is the master equation. The initial condition is p(x, 0) = δ(x). In the limit of small jumps and small time steps,
the master equation reduces to

p(x, t+ ∆t) = qp(x−∆x, t) + (1− q)p(x+ ∆x, t). (21)

By Taylor expanding p(x, t) to second order:

∂p

∂t
= −v ∂p

∂x
+D

∂2p

∂x2
, (22)

where

v ≡ (2q − 1)
∆x

∆t
, D ≡ ∆x2

2∆t
, (23)

are the drift velocity and the diffusion constant respectively. This is Fokker-Planck equation. In general, both v and D
can be position-dependent, and the Fokker-Planck equation becomes

∂p(x, t)

∂t
= − ∂

∂x
v(x)p(x, t) +

∂2

∂x2
D(x)p(x, t). (24)

Since probability is conserved, Fokker-Planck equation can be rewritten into the continuity equation

∂p(x, t)

∂t
= −∂J(x, t)

∂x
, (25)

where the probability current

J(x, t) ≡ v(x)p(x, t)− ∂

∂x
D(x)p(x, t). (26)

Fokker-Planck equation is equivalent to Fick’s law of diffusion. In this way, we have derived the Fick’s law from
the microscopic random walk model. The phenomenological parameter v and D relates to the microscopic parameter
according to Eq. (24).

2.2 Einstein Relation
At equilibrium, there is no probability flow J(x, t) = 0 and the probability distribution is given by

p(x) ∝ 1

D(x)
exp

(∫ x

−∞
dy

v(y)

D(y)

)
. (27)

1See http://mathworld.wolfram.com/PolyasRandomWalkConstants.html.
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Consider a particle moving in a fluid. According to Newton’s second law:

m
d2x

dt2
= −λv(x)− ∂U(x)

∂x
+ Fr, (28)

where λ is the drag coefficient and Fr is the random Brownian force. At equilibrium, d2x/dt2 = 0 and

〈v(x)〉 = − 1

λ

∂U(x)

∂x
. (29)

Insert into Eq. (27) and let D be a constant,

p(x) ∝ exp

(
−U(x)

λD

)
. (30)

On the other hand, according to Boltzmann distribution:

p(x) ∝ exp

(
−U(x)

kBT

)
. (31)

Therefore,

D =
kBT

λ
. (32)

This is the Einstein relation, which was proposed by Einstein in 1905. Essentially, the relation states that the same
random forces that cause the erratic motion of a particle in Brownian motion would also cause drag if the particle were
pulled through the fluid. It is an example of the fluctuation–dissipation relation.
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