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1 Lattice Random Walk

1.1 One Dimension

Consider the random walk on an one-dimensional lattice. At each time step, the particle jumps to the right with
probability ¢ and left with probability 1 — ¢. The distance of each jump is /. In the context of kinetics, [ is the mean
free path.

Denote x,, as the movement at n-th step. By definition, x,, is a Bernoulli random variable x,, ~ Ber(p). Different
Tn, n € N are independent. The position of the particle after IV steps is xny = vazl x;. By the linearity of the

expectation:
N

pn = (on) =Y (i) = N{z1) = N gl — (1 - g)]] = NI(2¢ - 1). (1)
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For a symmetric random walk ¢ = 1/2, un = 0 due to the symmetry.
To compute the variance of x ,
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It follows
ox = (zx) — (zn)? = ANI*q(1 —q), (5)

which is maximized when ¢ = 1/2 and is zero when ¢ = 0 or 1. Note that 0%, ~ N instead of N2.
One can also compute the probability mass function of z. The probability that the particle jumps right k times
among the first N steps is

p(k,N) = (Z)p’“(l -, (6)

and x is related to k as
x=kl—(N—-k)l=(2k—-N)l. 7

Essentially, this is the probability mass function of a binomial random variable, which is the independent sum of
identical Bernoulli random variables.

Perhaps it is more illuminating to consider the N — oo limit. According to the central limit theorem, z 5 tends to
distributed normally xx ~ N (un, 0% ):

1 7<z7u2N>2
p(x,N):\/ﬂa e 2N . (8)
N

This is a Gaussian wave packet, whose center drifts with velocity pn /N = [(2g — 1), and whose size spreads out with
time.

We now restrict ourselves to the symmetric/unbiased random walk ¢ = 1/2. The probability that the particle
returns to the origin after 2n steps is:

1 /2 1
P(zan =0) = 5 (: ) ~ T 9)

where we have used Stirling’s approximation:

! ~ V2 (g) (10)



Define the indicator random variable X,, = 1ifz,, = 0. X = Zf; X; counts the total number of returns. Then

(X):Z(XQ:ZP(JU%:O)N%Z%ZOO, (11)

which diverges.

The expected number of returns (X) is related to the probability of return. Denote p as the probability that the
particle ever returns to the origin, and p; as the probability that the particle returns to the origin exactly k times.
Obviously

pr = p*(1—p), (12)

by treating the whole random walk as k + 1 independent random walks. In this way,

<X>:Zz'm=(1—p)2ipi=ﬁ- (13)
=1 =1

Therefore,

(X)=oc0&p=1,
(X)<ooep<l.

The return probability of one-dimensional symmetric random walk is one p;p = 1.

1.2 Higher Dimensions

Random walks in higher dimensions can be treated similarly to the one-dimensional case. In the following, will only
focus on the return probability p for symmetric random walks.
In two dimensions, the probability the particle returns to the origin after 2n steps is

Ploon =0) =23 (2:) (2” N k) <2Z B ik> (14)
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where the particle goes up and down k times and left and right n — k times. In the last line, we use the fact that
choosing n from 2n items can be achieved by dividing 2n items into two piles of n items, then pick k items from the
first pile and n — k from the second.
Notice P(x2, = 0) is exactly the square of its one-dimensional counterpart. Now, the expected number of returns
is - L
X)=) Plxg,=0)~ =Y = =o0. 19
(X) =D Plxop=0)~—> — =00 (19)
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Therefore, the return probability of two-dimensional symmetric random walk is also pop = 1.



In three dimensions, the computation is more complicated. At the end of the day, (X) isrelatedto C'>",_, 1/i%/2 <
00. Therefore, psp < 1. This result was first proved by Pdlya in 1921. In fact, psp = 0.34, and the probability de-
creases with increasing the dimensionﬂ Random walks with p = 1 are called “recurrent”, and those with p < 1 are
called “transient”. There is a famous quote by Shizuo Kakutani:

A drunk man will find his way home, but a drunk bird may get lost forever.

2 Continuous Random Walk and Diffusion
2.1 Fokker-Planck Equation
p(z, N) can be derived recursively instead of directly. It is not hard to see

This is the master equation. The initial condition is p(x,0) = 6(z). In the limit of small jumps and small time steps,
the master equation reduces to

p(z,t + At) = gp(z — Az, t) + (1 — @)p(z + Az, t). (21

By Taylor expanding p(z, t) to second order:

ap _ dp L Pp
where A Ag?
X i

are the drift velocity and the diffusion constant respectively. This is Fokker-Planck equation. In general, both v and D
can be position-dependent, and the Fokker-Planck equation becomes

op(x,t) 0 92

o *%U(ff)l?(%t) T o2

D(z)p(z,t). (24)

Since probability is conserved, Fokker-Planck equation can be rewritten into the continuity equation

op(z,t) _ 9J(z,1)

ot or (25)
where the probability current
0
J(z,t) =v(x)p(z,t) — %D(x)p(x,t). (26)

Fokker-Planck equation is equivalent to Fick’s law of diffusion. In this way, we have derived the Fick’s law from
the microscopic random walk model. The phenomenological parameter v and D relates to the microscopic parameter

according to Eq. (24).

2.2 Einstein Relation

At equilibrium, there is no probability flow J(z, ¢) = 0 and the probability distribution is given by

Pl o o (/m % f)(é))) | @D

'Seehttp://mathworld.wolfram.com/PolyasRandomWalkConstants.htmll



http://mathworld.wolfram.com/PolyasRandomWalkConstants.html

Consider a particle moving in a fluid. According to Newton’s second law:

d27x oU (x)
- ox

+F,

where ) is the drag coefficient and F,. is the random Brownian force. At equilibrium, d?x/dt? = 0 and

(v(a)) = —3 290,

p(x) o exp (— UA%)) :

On the other hand, according to Boltzmann distribution:

p(x) o exp ( ZE(;)) :

 kgT
=z

Insert into Eq. (27) and let D be a constant,

Therefore,
D

(28)

(29)

(30)
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(32)

This is the Einstein relation, which was proposed by Einstein in 1905. Essentially, the relation states that the same
random forces that cause the erratic motion of a particle in Brownian motion would also cause drag if the particle were

pulled through the fluid. It is an example of the fluctuation—dissipation relation.
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