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The final will be mostly focused on the phase transition, Fermi statistics, and the kinetic theory.

1 Phase Transition
To review Ginzburg-Landau Theory, see Recitation Note 4 and 6. Here we only cover one practice problem.

1.1 Mean-Field Solution of Ising Model
Consider 2D Ising model on square lattice where neighboring spins interact. A horizontal neighboring pair of spins
has an interaction energy −Jxsisi+x. A vertical neighboring pair of spins has an interaction energy −Jysisi+y . Use
the mean-field theory to compute the phase transition temperature.

The total energy of the system can be written as

E =
1

2

∑
i

−Jx (sisi+x + sisi−x)− Jy (sisi+y + sisi−y) , (1)

where the 1/2 factor is because each link is over-counted twice by summing over all sites. The order parameter is

M =
1

N

∑
i

〈si〉. (2)

Using the mean-field decomposition si = M+(si−M) and assuming (si−M) is small, to the first order of (si−M),

E =
1

2

∑
i

−Jx
[
M(2si + si+x + si−x)− 2M2

]
− Jy

[
M(2si + si+y + si−y)− 2M2

]
(3)

=
∑
i

−(Jx + Jy)(2Msi −M2). (4)

If you are familiar with the mean-field solution of isotropic Ising model, this already looks like that with z = 2 and
J = Jx + Jy . Directly use the conclusion, we have

Tc =
Jz

kB
=

2(Jx + Jy)

kB
. (5)

As a sanity check, when Jx = Jy = J , the system is the same as an isotropic Ising model with z = 4.
We can also compute Tc from scratch. The key is to notice Eq. (4) is just the energy of N independent spins in an

effective magnetic field Beff ≡ 2(Jx + Jy)M . The self-consistency relation is

M =

∑
s1=±1 s1e

−βBeffs1∑
s1=±1 e

−βBeffs1
= tanh(βBeff) = tanh [2β(Jx + Jy)M ] . (6)

The critical condition for the nonzero M solution is when the slope of the R.H.S. is the same as that of the L.H.S.,
which is simply 2βc(Jx + Jy) = 1. This is identical to Eq. (5).

One can also obtain the self-consistency relation by minimizing the free energy, which arguably requires more
efforts. See Recitation Note 5 for details.

2 Quantum Statistics

2.1 Basic Properties
Here we summarize basic properties of three-dimensional quadratic dispersed non-interacting particles with different
quantum statistics. The Hamiltonian is

H =
∑
k

εk =
∑
k

~2k2

2m
. (7)

2



Statistics Bose-Einstein Fermi-Dirac

Grand partition function Ξk

[
1− e−β(εk−µ)

]−1 [
1 + e−β(εk−µ)

]+1

Particle number distribution nk
1

eβ(εk−µ) − 1

1

eβ(εk−µ) + 1
µ ∼ n relation nλ3

T = g3/2(z) nλ3
T = f3/2(z)

µ ∼ T relation
Low temperature physics Bose-Einstein condensation Degeneracy pressure

Here λT = h/(2πmkBT )1/2 is the thermal wavelength, z = eβµ is the fugacity, and f3/2 and g3/2(z) are special
functions whose plots are shown in the table. The fact that g3/2(z) is bounded leads to the Bose-Einstein condensation
below Tc.

It is important to note that µ is temperature dependent and when we take large T limit, we must also take this
dependence into account in order to reproduce the classical behavior. For both Bose and Fermi gas, at high temperature
µ → −∞ and z → 0, which leads to nλ3

T � 1. Physically, this means the distance between particles is much larger
then their thermal wavelength—the characteristic length scale of the particle in the context of statistic mechanics.
Therefore, particles do not overlap and quantum statistics is ineffective.

See Recitation Note 8 and 11 for more details on Bose gas and Fermi gas respectively.

2.2 Absorption of Fermi Gas
We review a problem in the pset. For the purpose of the final, you do not need to know the asymptotic expansion of
fν(z).

Consider a three-dimensional Fermi gas with quadratic dispersion. There are N such molecules in thermal equi-
librium with N impurity sites. Each site can host at most one fermion molecule and the binding energy of the impurity
site is −ε. Find the density of free particles in the low and high temperature limits.

For this type of problems, the first step is always to figure out the µ ∼ n (or z ∼ n) relation and go from there. It
is not hard to see

Nf =V

∫
dk

eβ(Ek−µ) + 1
=

V

λ3
T

f3/2(z), (8)

Nb =
N

e−β(ε+µ) + 1
, (9)

and the chemical potential is determined by

N = Nf +Nb =
V

λ3
T

f3/2(z) +
N

e−β(ε+µ) + 1
, (10)

which transfers to
nλ3

T = (1 + eβεz)f3/2(z). (11)
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This equation cannot be solved analytically, so we need to analyze its asymptotic behavior. Consider z � 1 limit, to
the quadratic order of z:

nλ3
T ≈ (1 + eβεz)(z − 2−3/2z2) ≈ z + (eβε − 2−3/2)z2, (12)

where we have used the expansion of f3/2(z): f3/2(z) ≈ z − 2−2/3z2 for z � 1. This quadratic equation of z gives
the solution

z =

√
4nλ3

T (eβε − 2−3/2) + 1− 1

2(eβε − 2−3/2)
. (13)

Note that according to the solution, z � 1 if nλ3
T � 1 or eβε � 1.

• High temperature nλ3
T � 1.

nf ≈
z

λ3
T

≈ 1

λ3
T

√
4nλ3

T (eβε − 2−3/2) + 1− 1

2(eβε − 2−3/2)
≈ n, (14)

which makes sense as at high temperature we expect most particles are not absorbed.

• Low temperature eβε � 1.

nf ≈
z

λ3
T

≈ 1

λ3
T

√
4nλ3

T (eβε − 2−3/2) + 1− 1

2(eβε − 2−3/2)
≈
√
nλ−3

T e−βε/2, (15)

which is expected because at exactly the ground state all particles will occupy negative energy impurity states.

It is very important to notice both high and low temperature corresponds to the z � 1 limit, due to the nontrivial
temperature dependence of the chemical potential.

See Recitation Note 11 for more problems related to Fermi gas.

3 Kinetic Theory
We review two problems in the last pset.

3.1 Effusion
A high vacuum chamber develops a crack of area σ, and air from outside leaks in by effusion.

(a) Find the rate the air molecules leaking in through the crack.
(b) The leak is soon stopped, after a small amount of air enter the chamber. After the air in the chamber come to

equilibrium, show that its temperature is higher then that of the air outside by a factor 4/3.
The particle flux is

IN = σn

∫
vx>0

d3pvxf(p) =
σn

m

∫
px>0

d3ppxf(p), (16)

where f(p) is the normalized Maxwell-Boltzmann distribution:

f(p) = (2πmkBT )
−3/2

e−βp
2/2m, (17)

with p2 ≡ p2
x + p2

y + p2
z . Evaluate the integral:

IN =
σn

m
(2πmkBT )

−1/2
∫ +∞

0

dpxpxe
−βp2x/2m = σn

√
mkBT

2π
= σn

√
kBT

2πm
. (18)

The energy flux is

IE = σn

∫
vx>0

d3pvx
p2

2m
f(p) =

σn

2m2

∫
px>0

d3ppxp
2f(p) = 2kBTIN . (19)
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(You will be given the integral formula, if you are asked to evaluate complicated integrals in the final.)
Therefore, the average energy of escaped molecules is

〈E〉 =
IE∆t

IN∆t
=
IE
IN

= 2kBT. (20)

Because of of the conservation of energy, the internal energy is also U = 〈E〉 = 2kBT . On the other hand, the internal
energy of classical ideal gas at equilibrium is

U =
3

2
kBT

′. (21)

Equate the two internal energies, we have

T ′ =
4

3
T. (22)

3.2 Diffusion and Random Walk
Regard the atomic motion in a gas as a random walk due to collisions. Give an order-of-magnitude estimate of the
time it would take an air molecule in a room to travel a distance of 1cm. What about 1m? (You need to estimate the
mean-free path first.)

Denote the density of air as n, the scattering length as σ. σ = πr2, where r is the kinetic radius of the gas molecule.
The mean-free path is λ = 1/nσ. This is the distance traveled by the gas molecule in a step of random walk. In order
to traverse a distance of L, the particles on average need N = L2/λ2 steps of random walks (because of the standard
deviation of random walk). Each step takes time τ = λ/v. In this way, the total time needed to travel the distance of
L through random walk is

T = Nτ =
L2

λ2

λ

v
=
L2λ

v
=

L2

πvnr2
. (23)

Insert the numbers, you will find that it takes around 10mins or even longer in order for the gas molecule to travel
1m. This means when you suddenly smell the sweet popcorn when your friend brings it out from the bag, the smelling
is very likely NOT due to the diffusion, but is due to the air flow induced by the pressure difference.

3.3 Sound Wave
You will not be asked to derive the wave equation of sound waves in the final, which means no Euler equation nor
Navier-Stokes equations (yay!). However, you should know what the wave equation is and how to derive the sound
velocity from it. The second part of problem 4 in pset 11, where the damping coefficient is derived from the wave
equation, is a good reference.
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