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1 Equivalence of Ensembles
We have already learned the microcanonical ensemble and the canonical ensemble.

The microcanonical ensemble is an ensemble of isolated systems. The entropy as a function of the total energy
S(E) fully determines the thermodynamic property of the system.

The canonical ensemble is an ensemble of systems in contact with a large heat bath. The free energy as a function
of the temperature F (T ) fully determines the thermodynamic property of the system.

Although the two ensembles are seemingly very different, the thermodynamic property of a system is independent
of which ensemble is used to model it in the thermodynamic limit.

1.1 Case Study: Spin 1/2 in the Magnetic Field
We demonstrate the equivalence by considering N spins with S = 1/2 in the magnetic field. The Hamiltonian is
H =

∑N
i=1 gµBBS

z
i .

1. Microcanonical ensemble. Suppose the total energy of the system is E. It follows

E =
∆

2
(n↑ − n↓) =

∆

2
(2n↑ −N), (1)

where ∆ ≡ gµBB is the energy gap of the system and we have used N = n↑ + n↓. The entropy of the system
is

S(E) = kB ln

(
N

n↑

)
≈ kB [N lnN − n↑ lnn↑ − (N − n↑) ln(N − n↑)] . (2)

The temperature is
1

T
=
∂S

∂E
=

1

∆

∂S

∂n↑
=
kB
∆

ln
N − n↑
n↑

=
kB
∆

ln
N/2− E/∆
N/2 + E/∆

, (3)

which can be simplified as

E = −N∆

2
tanh

(
β∆

2

)
. (4)

After some algebra, one can further combine Eq. (1), (2) and (4) to rewrite entropy as a function of temperature:

S = NkB

[
ln 2 + ln cosh

(
∆β

2

)
− ∆β

2
tanh

(
∆β

2

)]
. (5)

2. Canonical ensemble. The partition function is

Z = (e−β∆/2 + eβ∆/2)N = 2N cosh

(
∆β

2

)
. (6)

The average energy is

〈E〉 = −∂ lnZ

∂β
= −N∆

2
tanh

(
∆β

2

)
, (7)

which is consistent with Eq. (3). The average entropy is

S = −∂F
∂T

= NkB

[
ln 2 + ln cosh

(
∆β

2

)
− ∆β

2
tanh

(
∆β

2

)]
, (8)

which is consistent with Eq. (5).

Several comments are given in order:
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• To compute the thermodynamic property of a system in contact with a heat bath T , one can use the microcanon-
ical ensemble, as long as the total energy is correctly identified through E(T ), which in the above example is
given by Eq. (4).

• Conversely, to compute the thermodynamic property of an isolated system, one can use the canonical ensemble,
as long as the temperature is correctly identified through T (E), which in the above example is given by Eq. (3).

• Since the two ensembles are “equivalent” (more about the meaning of “equivalence” in the next section), we
are free to choose whichever ensemble that is computationally easier. In the above example, both approaches
are easy. In the first problem of pset 1 (defects in a crystal), using a microcanonical ensemble is easier because
summing the partition function there is hard. Later in this course we will see some examples when doing the
summation is actually easier.

1.2 Energy Fluctuations in the Canonical Ensemble
The energy in the microcanonical ensemble is a constant, while the energy in the canonical ensemble is a random
variable. We just showed that by choosing the proper temperature, one can make 〈E〉(T ) = E, such that the two
ensembles gives the same thermodynamic property of the system. It is natural to ask the question: What is the
variance/fluctuation of E in the canonical ensemble?

Note that Var(E) = 〈E2〉 − 〈E〉2. To compute 〈E2〉, we use the same trick when deriving the expression of 〈E〉:

〈E2〉 =
∑
n

E2
nP (En) =

1

Z

∑
n

E2
ne
−βEn =

1

Z

∂2

∂β2
e−βEn =

1

Z

∂2Z

∂β2
. (9)

Thus

Var(E) =
1

Z

∂2Z

∂β2
−
(
− 1

Z

∂Z

∂β

)2

=
∂

∂β

(
1

Z

∂Z

∂β

)
= −∂〈E〉

∂β
= kBT

2CV . (10)

Two comments come in order:

• The above equation is an example of the fluctuation-dissipation theorem, which relates the fluctuation (LHS)
and the response of the system (RHS). In this way, we also prove CV > 0 always holds true.

• The relative energy fluctuation is

∆E

E
=

√
Var(E)

E
∝ 1√

N
→ 0, as N →∞. (11)

This means in the thermodynamic limit, the microcanonical ensemble and the canonical ensemble are strictly
equivalent.

2 Adiabatic Demagnetization Revisited
We revisit the last problem in the second pset.

Consider N spin-1/2 spins in a magnetic field B. Initially, the system has a temperature T . If we slowly reduce the
magnetic field to B/2, what becomes the temperature of the system? If we slowly reduce the magnetic field to zero,
what becomes the temperature of the system? (Hint: the entropy remains unchanged in the above adiabatic process.)

We have already computed the entropy of this system in Eq. (5) and (8). It is instructive to plot the S(T ) curve,
where we have set gµB/2kB = 1:
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• B 6= 0. At zero temperature, all spins are antiparallel to the magnetic field. There is only one state, thus S → 0
as T → 0. At high temperature, the magnetic field is irrelevant and spin directions are completely random, thus
S → NkB ln 2 as T →∞.

• B = 0. Since there is no energy difference between spin states, spin directions are always completely random.

Start from any initial state (Bi, Ti), when the magnetic field is reduced adiabatically, we are only allowed to
move left horizontally on the S − T plot, so the temperature will decrease. Since entropy is only a function of ∆β,
B/T = const. through out the process. Thus when Bf = Bi/2, Tf = Ti/2. The temperature is lowered by reducing
the magnetic field adiabatically.

The situation becomes problematic as B → 0. When B = 0, the entropy is always kBN ln 2 independent of the
temperature. However, unless we start from T = ∞, the initial entropy is always smaller than this value. To resolve
this issue, note that an adiabatic process must be a reversible process such that the entropy of the system does not
increase due to irreversibility. This requires the system to be at thermal equilibrium all the time. Microscopically, this
means the thermalization time τ → 0. However, the two limits B → 0 and τ → 0 do not commute:

• If we take B → 0 first then τ → 0, the system cannot thermalize, which means the even when B = 0 and
∆ = 0, the spin distribution is not completely random and depends on the previous direction of B when B 6= 0.
The resulting state-energy distribution does not obey any distribution in the microcanonical/canonical ensemble.
Therefore, one can say the system is not in thermal equilibrium and the temperature is not well-defined.

• If we take τ → 0 first then B → 0, the system indeed thermalizes and extracts entropy from the environment.
Therefore, the adiabatic condition is violated.

3 Diatomic Ideal Gas
Previously, we have studied monoatomic ideal gas. We now consider diatomic ideal gas, which involves internal
degrees of freedom. The Hamiltonian of diatomic gas is

HN =

N∑
i=1

[
p2
A,i

2mA
+

p2
B,i

2mB
+
k

2
(xA,i − xB,i)

2

]
, (12)

where the attractive interaction is expanded around the minimum of the interatomic potential. Note that we only
consider the interaction within a molecule and neglect the inter-molecule interaction. In this way, the partition function
factorizes as Z = ZN1 /N !.

To compute the partition function of a single molecule, we rewrite the Hamiltonian in the center-of-mass frame.
Define

R ≡ xAmA + xBmB

mA +mB
, r ≡ xA − xB , (13)

4



the Hamiltonian becomes

H =
p2
R

2M
+

p2
r

2µ
+
kr2

2
, (14)

where total mass M ≡ mA+mB and reduced mass 1/µ ≡ 1/mA+ 1/mB . The center of mass motion is represented
by Htrans = p2

R/2M . The remaining terms represents the internal degrees of freedom of the molecule. To this end, it
is convenient to switch to the spherical coordinate r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ), such that

p2
r

2µ
+
kr2

2
=
µ

2
(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2) +

kr2

2
=

1

2I
(p2
θ +

p2
ϕ

sin2 θ
)︸ ︷︷ ︸

Hrot

+
p2
r

2µ
+
kr2

2︸ ︷︷ ︸
Hvib

, (15)

where we have decomposed the internal degrees of freedom into a rotation part and a vibration part. Here I ≡ µ〈r2〉
is the moment of inertia of the molecule1.

To summarize, H = Htrans +Hrot +Hvib and the partition function also factorizes out as Z1 = ZtransZrotZvib.
We now consider each term separately.

• Translation. Htrans is identical to the Hamiltonian of monoatomic ideal gas. Thus

Ztrans =
V

λ3
T

, (16)

where λT =
√

2π~2/MkBT . The heat capacity is CV,trans = 3kB/2.

• Vibration. Hvib is the Hamiltonian of a harmonic oscillator. At low temperature, it should be treated quantum
mechanically. We have already computed this in the previous recitation, and the partition function is

Zvib =

∞∑
n=0

exp

[
−
(
n+

1

2

)
β~ω

]
=

exp(−Θv/2T )

1− exp(−Θv/T )
, (17)

where ω ≡
√
k/µ and we have defined the characteristic temperature of vibration Θv ≡ ~ω/kB .

At low temperature, the heat capacity decreases exponentially with temperature. At high temperature, CV,vib =
kB because of the existence of both kinetic energy and potential energy.

At high temperature, the system can also be treated semicalssically, giving the partition function:

Zvib =
1

h

∫ +∞

−∞
dp exp

(
−βp

2

2µ

)∫ +∞

−∞
dx exp

(
−βkx

2

2

)
=
kBT

~ω
. (18)

Note the similarity between Zvib at high temperature and Ztrans.

• Rotation. Hrot is the Hamiltonian of a rigid rotor. At low temperature, it should be treated quantum mechani-
cally. After quantization (See this [wikipedia page]), the rotation energy level is

El =
~2

2I
l(l + 1), (19)

where the angular momentum l = 0, 1, . . .. Each level has degeneracy of gl = 2l + 1. The partition function is
then

Zrot =

∞∑
l=0

(2l + 1) exp

(
−l(l + 1)

Θr

T

)
, (20)

where we have defined the characteristic temperature of rotation Θr ≡ ~2/2IkB . This summation cannot be
performed analytically. At low temperature, one can simply preserve the first two terms in the summation. The

1Here we actually used an approximation to treat I as a constant. Otherwise Hrot and Hvib are correlated.
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system should behave similarly as a harmonic oscillator at low temperature. The heat capacity should thus
decreases exponentially.

At high temperature, the spectrum can be approximated as a continuum:

Zrot ≈
∫ ∞

0

dl(2l + 1) exp

(
−l(l + 1)

Θr

T

)
=

∫ ∞
0

d(l(l + 1)) exp

(
−l(l + 1)

Θr

T

)
=

T

Θr
. (21)

At high temperature, the system can also be treated semiclasscially:

Zrot =
1

h2

∫ 2π

0

dϕ

∫ +∞

−∞
dpθ exp

(
−βp

2
θ

2I

)∫ π

0

dθ

∫ +∞

−∞
dpϕ exp

(
−

βp2
ϕ

2I sin2 θ

)
=

2I

β~2
=

T

Θr
, (22)

yielding the same result. Note the similarity between Zrot at high temperature and Ztrans. The heat capacity at
high temperature is thus CV,rot = kB .

For a typical diatomic molecule Θr ≈ 10− 100K while Θv ≈ 103K (try to estimate these number by yourself!).
Therefore the CV − T curve for diatomic gas has the following form:

When the temperature becomes even higher, the atomic bonding between the atoms breaks (in other words, the har-
monic approximation in the Hamiltonian Eq. (12) fails), and a diatomic molecule becomes two monoatomic molecules,
whose heat capacity in total is 3kB/2 ·2 = 3kB . The heat capacity decreases compared with the fully excited diatomic
gas!
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