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It was Landau who first classified phases of matter according to orders. Orders originate from broken symmetry
and are characterized by “order parameters”. This framework, usually called “Landau’s paradigm”, can capture a wide
range of phases in classical and quantum systems. Here are some examples of ordered phases:

• Crystals. Continuous translation symmetry is broken down to discrete translation symmetry.

• Magnets. Time-reversal and spin rotation symmetry is broken.

• Nematic liquid crystals. Rotational symmetry is broken (but continuous translation symmetry is still preserved).

• Superfluid helium. Global U(1) symmetry of the phase of the helium wavefunction is broken.

The last example is more subtle as the broken symmetry is intrinsically quantum mechanical.
In Landau’s paradigm, the vapor and the liquid of water are regarded as the same phase because they are not only

connected in the phase diagram (beyond the critical point), but also share the same order parameter.

Figure 1: Phase diagram of water.

Phases such as the (fractional) quantum Hall states cannot be fit into the Landau paradigm, as there does not exist
any local order parameters that can characterize the phase. Concepts such as the “topological order” is coined to
characterize such phases.

1 Phenomenological: Ginzburg-Landau Theory
We study the spin ferromagnet-paramagnet phase transition. From the experiment, we find when the temperature
is below some critical temperature Tc, the magnetization starts to grow from zero. The order parameter is thus the
magnetization:

M =
1

N

N∑
i=1

〈Si〉, (1)

where N is the total spin number and 〈Si〉 is the expectation of the i-th spin.
In the following, we construct a phenomenological theory to describe the thermodynamic property of the system

near the phase transition. The goal of the phenomenological theory is to describe the empirical relationship between
different phenomena. It is not directly derived from the first principles, for example, by solving the Schödinger equa-
tion. Instead, the phenomenological theory is only required to be consistent with the first principles. The parameters
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in the phenomenological theory can either be fitted from the experiment data, or in some cases can be derived from
the microscopic theory.

Note that Si in Eq. (1) can be discrete or continuous depending on the level of approximation. Since right now we
are working out a phenomenological theory, this detail does not matter.

1.1 Zero Magnetic Field
Near the critical point, M is small and the free energy can be Taylor expanded as a series of M . We first assume there
is no external magnetic field, such that the energy of the system is invariant under spin flip operation Si → −Si for
all spins i. In this way, the free energy should also be invariant under M → −M . Therefore, odd order terms cannot
appear in the expansion. Also the free energy must be extensive with the spin number N . This leads to

F (T,M) = NF0(T ) +
1

2
Na(T )M2 +

1

4
Nb(T )M4. (2)

For convenience, in the following we will work with the free energy density

f(T,M) =
F

N
= F0(T ) +

1

2
a(T )M2 +

1

4
b(T )M4. (3)

The magnetization is chosen such that the free energy is minimized. This requires b(T ) > 0 for all T , otherwise
the minimum is always at infinity. The solution to

∂f

∂M
= a(T )M + b(T )M3 = 0, (4)

is

M = 0, ±

√
−a(T )
b(T )

. (5)

Since M must be real, the second solution exists only when a(T )/b(T ) < 0, i.e. a(T ) < 0. Therefore, a(T ) must
changes sign when the temperature goes across the critical temperature Tc.

Figure 2: Shape of the free energy as a function of the order parameter below the critical temperature. Here the
magnetic field is nonzero so that the degeneracy is broken.

The above analysis allow us to expand the parameters a(T ) and b(T ) as functions of temperature T around Tc to
the lowest nonzero order:

F0(T ) =F0, (6)
a(T ) =a1(T − Tc), (7)
b(T ) =b0, (8)

where a1, b0 > 0.
To this end, we can already compute many thermodynamic properties of the system:
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• Magnetization.

M =

0, T > Tc,

±
√

a1(Tc−T )
b0

= ±
√

a1Tc

b0
t, T ≤ Tc,

(9)

where
t ≡ 1− T

Tc
. (10)

Note that when T < Tc there are two solutions of M with equal energy but opposite sign. In reality, at the
critical temperature, the system will randomly pick one of the solution due to the thermal fluctuation. This is
called “spontaneous symmetry breaking”

• Free energy density.

f(T ) =F0 +
1

2
a1(T − Tc)M2 +

1

4
b0M

4 (11)

=

{
F0, T > Tc,

F0 − a2
1(T−Tc)

2

4b0
, T ≤ Tc.

(12)

Note that the free energy is continuous around Tc.

• Entropy density.

s = − ∂f
∂T

=

{
0, T > Tc,
a2
1(T−Tc)

2b0
, T ≤ Tc.

(13)

Note that the entropy is also continuous around Tc. This means there is no latent heat during the phase transition.

• Heat capacity per spin.

cV = T
∂s

∂T
=

{
0, T > Tc,
a2
1T
2b0

, T ≤ Tc,
(14)

which has a discontinuous jump across Tc. Because the first order derivative of the free energy is continuous
while the second order derivative is not, this phase transition is classified as the “second order phase transition”.

1.2 Nonzero Magnetic Field
We now add small magnetic field to the system. Magnetic field breaks the spin flip symmetry. To the lowest order, this
will introduce a term linear in M to the free energy density: c(B, T )M . Expand c(B, T ) to the lowest order in both
B and T , we have

f(T,B) = F0 + c0BM +
1

2
a1(T − Tc)M2 +

1

4
b0M

4. (15)

The linear term breaks the symmetry between the two degenerate state when B = 0.
When T > Tc, it suffices to keep only the quadratic term. Minimizing the free energy gives

M =
c0B

a1(Tc − T )
. (16)

When T < Tc, we apply perturbation theory to the original zero-field solution Eq. (9). Denote M0 =
√
a1Tct/b0 > 0

such that M = ±M0 + δM(B). The sign of M0 depends on the sign of c0B.
Assume δM is small, we can expand Mn = (M0 + δM)n ≈ Mn

0 + nMn−1
0 δM . In this way, the equation

∂f/∂M = 0 becomes
c0B + a1(T − Tc)(M0 + δM) + b0(M0 + 3M2

0 δM) = 0, (17)
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whose solution is
δM =

−c0B
a1(T − Tc) + 3b0M2

0

=
c0B

2a1(T − Tc)
. (18)

The above result allows us to compute the magnetic susceptibility of the system:

χ =
∂M

∂B

∣∣∣
B→0

=

{
c0

a1(Tc−T ) =
c0

a1Tc
t−1, T > Tc,

c0
2a1Tc

(−t)−1, T ≤ Tc.
(19)

Note that the magnetic susceptibility diverges at the critical temperature. Also, the 1/T dependence at high temperature
is consistent with the Curie’s law of paramagnetism.

Figure 3: Magnetization, heat capacity and magnetic susceptibility of the Ginzburg-Landau theory as functions of
temperature.

Special attention should be paid to the phase transition controlled by the magnetic field when T < Tc. Without
loss of generality assume c0 > 0. When B > 0, the solution to the free energy is M = −M0 + δM . When B < 0,
the solution suddenly jumps to M =M0 + δM . Because the first order derivative of the free energy is discontinuous
(M ∝ ∂F/∂B), this phase transition is classified as the “first order phase transition”.
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Figure 4: Shape of the free energy as a function of the order parameter below and above the critical temperature. There
is no magnetic field so that there are two degenerate spin states.

This type of analysis, by expanding the free energy as a function of the order parameter, is called the Ginzburg-
Landau theory. Here are several remarks about the theory:

• When the interaction is present, the free energy is normally not an analytic function at the phase transition point.
For example, there may be a logarithmic dependence. In these cases, one cannot Taylor expand the free energy
as what we have done above;

• Ginzburg-Landau theory can also capture the vapor-liquid phase transition of the water, because nothing can
prevent us from expanding the free energy as a function of density difference of the vapor and the liquid.
However, the density difference in this case is not an order parameter.

• Landau’s paradigm requires symmetry breaking to be associated with second order phase transition. Nothing to
much can be said about the first order phase transition. There is no symmetry breaking involved in the above
example of magnetic field driven first order phase transition.
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