
8.08 Statistical Physics II — Spring 2019
Recitation Note 5

Huitao Shen
huitao@mit.edu

Mar 11, 2019

Contents
1 Ising Model in 1D: Exact Solution 2

2 Ising Model in 4D and Higher: Mean-field Theory 3
2.1 Homogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Nonhomogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1



1 Ising Model in 1D: Exact Solution
The Ising model is the simplest microscopic model for ferromagnet-paramagnet transition. Its Hamiltonian is

H = −J
∑
〈ij〉

SiSj −B
∑
i

Si, (1)

where the spin Si = ±1 and the summation 〈ij〉 is restricted to nearest-neighbor pairs. Computing the partition
function of this Hamiltonian exactly is easy only in 1D.

In 1D, the Hamiltonian can be written as

H = −
N∑
i=1

[
JSiSi+1 +

B

2
(Si + Si+1)

]
. (2)

We impose the periodic boundary condition as S1 = SN+1.
The partition function is

Z =
∑

S1,S2,...,SN

exp

[
N∑
i=1

β

(
JSiSi+1 +

B

2
(Si + Si+1)

)]
(3)

=
∑

S1,S2,...,SN

N∏
i=1

exp

[
β

(
JSiSi+1 +

B

2
(Si + Si+1)

)]
. (4)

The trick is to convert the summation to the matrix multiplication. Define the 2× 2 transfer matrix T as

〈S|T |S′〉 = exp

[
β

(
JSS′ +

B

2
(S + S′)

)]
. (5)

In other words,

T =

(
eβ(J+B) e−βJ

e−βJ eβ(J−B)

)
. (6)

It follows

Z =
∑

S1,S2,...,SN

N∏
i=1

exp

[
β

(
JSiSi+1 +

B

2
(Si + Si+1)

)]
(7)

=
∑

S1,S2,...,SN

N∏
i=1

〈Si| exp

[
β

(
JSiSi+1 +

B

2
(Si + Si+1)

)]
|Si+1〉 (8)

=
∑
S1

〈S1|TN |S1〉 (9)

=tr(TN ) = tr
[(
QΛQ−1

)N]
= tr(Q−1QΛN ) = tr(ΛN ) (10)

=λN+ + λN− , (11)

where we have used the eigenvalue decomposition T = QΛQ−1. Q is the orthogonal matrix and Λ = diag(λ+, λ−).
We have also used the cyclic property of trace tr(AB) = tr(BA).

λ± = eβJ
[
cosh(βB)±

√
sinh2(βB) + e−4βJ

]
. (12)

Since λ+ > λ−, in the limit when N →∞, the partition function simplifies to Z = λN+ . The free energy is

F = −kBT lnZ = −kBTN lnλ+. (13)
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The magnetization is

M = −∂F
∂B

= −kBTN
λ+

∂λ+

∂B
= N

sinh(βB) + sinh(βB) cosh(βB)√
sinh2(βB)+e−4βJ

cosh(βB) +
√

sinh2(βB) + e−4βJ

. (14)

For any finite β (i.e. nonzero temperature), when B → 0, sinh(βB)→ 0 and cosh(βB)→ 1, it is not hard to see the
magnetization M → 0. Therefore, there is no ferromagnet-paramagnet phase transition at finite temperature in 1D.

2 Ising Model in 4D and Higher: Mean-field Theory
It is extremely difficult to solve Ising model exactly in 2D and is impossible in 3D. In order to obtain nontrivial results,
we need to resort to certain approximation methods. The approximation we are going to use is called the mean-field
approximation. It is a very general method and is extremely useful. Furthermore, it can be proved that in dimensions
higher than four, the result given by mean-field theory is exact at thermodynamic limit.

2.1 Homogeneous Case
Recall the order parameter

M =
1

N

N∑
i=1

〈Si〉, (15)

we rewrite the spin as Si = M + (Si −M) and assume (Si −M) is small such that all high order terms (greater than
one) can be ignored. In this way,

H =− J
∑
〈ij〉

[M + (Si −M)] [M + (Sj −M)]−B
∑
i

Si (16)

≈− J
∑
〈ij〉

(
SiM + SjM −M2

)
+B

∑
i

Si (17)

=− (JMz +B)︸ ︷︷ ︸
Beff

∑
i

Si −
1

2
JNzM2. (18)

The interaction between the nearest-neighbor spins are replaced by an effective magnetic field, whose strength depends
on the order parameter and is going to be determined self-consistently.

The problem is now reduced to the familiar single spin in the magnetic field. The partition function is straightfor-
ward to compute:

Z = e−βJNzM
2/2
(
e−βBeff + eβBeff

)N
. (19)

The free energy is then

F = −kBT lnZ =
1

2
JNzM2 − kBTN ln

(
e
− Beff
kBT + e

Beff
kBT

)
. (20)

One can plot F as a function of M , which is in great agreement with the Ginzburg-Landau theory.
To determine M , the self-consistency relation is

M = −∂F
∂B

=

∑
S=±1 Se

−βBeffS∑
S=±1 e

−βBeffS
= tanh (βBeff) . (21)

One can also minimize the free energy directly as a function of the magnetization, as what we did in the Ginzburg-
Landau theory. This will also lead to Eq. (21). In this way we confirm the consistency of the mean-field approximation.
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Figure 1: Free energy as a function of magnetization according to Eq. (20). Here we set B = 0 and Jz = 1. Left:
T/Tc = 1.1; Right: T/Tc = 0.9.

Note that in the energy minimization approach, it is important to keep the JNzM2/2 term in the free energy, although
this term can be safely neglected in the self-consistency approach.

As an example, we consider the zero field limit B = 0. The self-consistency equation becomes

M = tanh(βJMz). (22)

It is not hard to see nonzero solution of M exists only when βJz > 1. Therefore, the critical temperature is

Tc =
Jz

kB
. (23)

The reader is encouraged to work with the general case when B 6= 0 and compare thermodynamic properties of
the model with those from the Ginzburh-Landau theory.

2.2 Nonhomogeneous Case
Instead of imposing a homogeneous magnetic field, we apply a spatially periodic magnetic field B(r) = Bke

ik·r. The
magnetization is also expected to be periodic M = Mke

ik·r. The homogeneous case can be seen as the Bk = δ(k)
limit.

Under the mean-field framework, the deviation of the magnetization around the homogeneous solution at point r
can be expressed as

M(r) = χ0Beff(r) = χ0B(r) + χ0J
∑

δ∈NN

M(r + δ). (24)

Here χ0 = ∂M/∂B|B→0 is the susceptibility of a single spin in the magnetic field. The above expression is accurate
in the weak magnetic field limit.

After Fourier transform,
Mk = χ0Bk + χ0JMk(z − ak2), (25)

where z is the coordination number and a > 0 is some constant. To see how the last term appears:∑
r

∑
δ∈NN

M(r + δ)eik·r =
∑
r

M(r)
∑

δ∈NN

eik·(r−δ) (26)

=
∑
r

M(r)eik·r
∑

δ∈NN

e−ik·δ (27)

=Mk

∑
δ∈NN

cos(k · δ) (28)

≈Mk(z + ak2). (29)
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Here we assumed the lattice has inversion symmetry such that whenever δ is a nearest-neighbor vector, so does −δ.
Therefore, the resulting integral is even in k and the lowest k-dependent term is quadratic.

In this way, the momentum dependent susceptibility of the Ising model is

χk =
∂Mk

∂Bk

∣∣∣∣
Bk→0

=
χ0

1− Jz + aJχ0k2
=

1

χ−1
0 − Jz + aJk2

. (30)

When the temperature is high enough, χ ∼ T−1. Also note Tc = Jz/kB . We can rewrite the above expression as

χk =
A

B(T − Tc) + k2
, (31)

where A and B are some temperature independent constants. When k = 0, we have χ ∼ (T − Tc)
−1, which is

consistent with the results computed from the homogeneous susceptibility.
On the other hand, the correlation length ξ is defined as

χk ∼
1

ξ−2 + k2
. (32)

By comparing the above two results, ξ ∼ |t|−1/2, where t = 1 − T/Tc. It is find that the correlation length also
diverges at the critical point.

Based on this result, we can argue why mean-field result is exact at dimensions higher than four. Physically,
mean-field approximation neglects the fluctuation effect. The approximation is valid if near the critical point

〈(δM)2〉 � 〈M〉2. (33)

This condition is called the “Ginzburg criterion”.
From Ginzburg-Landau theory or mean-field calculation, we already know that 〈M〉2 ∼ t near the critical point,

independent of the dimension. In order to estimate〈(δM)2〉, we need to work out the spatial dependent susceptibility.

χ(r) ∼
∫
dk

eik·r

k2 + χ−2
∼ e−r/ξ

rd−2
. (34)

Therefore 〈(δM)2〉 ∼ χ(ξ) ∼ χ2−d ∼ t(d−2)/2.
It follows

〈(δM)2〉
〈M〉2

∼ t(d−2)/2

t
∼ td/2−2, (35)

which does not diverge at t = 0 only when d > 4.
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