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1 Common Problems in Quiz 1 and Psets
There were a lot of confusions in Ginzburg-Landau theory of phase transition.

First, the order parameter and the critical exponent are different. Order parameters (e.g. magnetization) character-
ize the order of the system. Critical exponents characterize the behavior of thermodynamic properties of the system
near the critical point. One of the critical exponents, usually denoted as β, describes the order parameter behavior near
the critical point: ∆ ∼ tβ .

Consider the expansion of the GL free energy:

F (T,∆) = h(T )∆ + a(T )∆2 + b∆4, (1)

where b > 0. ∆ is the order parameter.

• The coefficients in the GL free energy are smooth function of order parameter and temperature. One of the
significant consequences of GL theory is that the order parameter can be a non-smooth function of temperature
while the free energy is smooth.

• In the GL theory,

– Second order phase transition: free energy minimum splitting.
For example, h(T ) = 0 and a(T ) = a1(T − T2).

– First order phase transition: free energy minimum switching.
For example, h(T ) = h1(T − T1) and a(T ) = −a0 < 0. It is important to note a(T ) < 0 such that there
are two minima to switch.

• Although h(T ) = a(T ) = 0 is a legal answer for a system without any phase transition, this system sits at the
critical point all the time and is not stable against perturbations. Changing a(T ) a little bit (no matter how small)
sends the system into a different phase. However, if a(T ) = a0 > 0, varying a0 a little bit (as long as smaller
than |a0|) will not send the system into a different phase.

2 Grand Canonical Ensemble

2.1 Properties
Grand canonical ensemble describes a system in contact with a large particle bath and a large heat bath. It is very sim-
ilar to the canonical ensemble, except that apart from the temperature that characterizes the system in equilibrium with
the heat bath, there is another parameter called the “chemical potential” that characterizes the system in equilibrium
with the particle bath. In Table 1 we compare all three ensembles we have encountered so far in this course.

In the table, n ≡ N/V is the particle density and isothermal compressibility

κT ≡ −
1

V

(
∂V

∂p

)
T

. (2)

According to the fluctuation-response relation, κT > 0.

2.2 Relation with the Canonical Ensemble
The canonical partition function and the grand partition function are related as

Ξ =

∞∑
N=0

eβµN
∑
i

e−βE
(N)
i (3)

=

∞∑
N=0

fNZN , (4)
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where f = eβµ is the fugacity of the system and ZN is the partition function of the N particle system.
In noninteracting systems, ZN = ZN or ZN = ZN/N !, where Z ≡ Z1 is the single particle partition function.

The grand partition function simplifies as

Ξ =


∞∑
N=0

fNZN =
1

1− fZ
, distinguishble,

∞∑
N=0

fN
ZN

N !
= efZ , indistinguishble.

(5)

For such systems, we can compute their average particle number:

N0 ≡ 〈N〉 =
∂ ln Ξ

∂(βµ)
= f

∂ ln Ξ

∂f
=


fZ

1− fZ
, distinguishble,

fZ, indistinguishble.
(6)

Also the marginal distribution of the particle number:

PN =
∑
j

PN,j =


(fZ)N (1− fZ) =

(
N0

1 +N0

)N
1

1 +N0
∼ Geometric

(
1

1 +N0

)
, distinguishble,

(fZ)N

N !
e−fZ =

NN
0

N !
e−N0 ∼ Poisson(N0), indistinguishble.

(7)
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Figure 1: Probability mass function of geometric distribution and mean distribution with mean 10.

Both marginal distributions have mean N0. The variance of distinguishable case is N0(N0 + 1) ∼ N2
0 while the

variance of the indistinguishable case is N0.
The variance of the distinguishable case is not consistent with the fluctuation-response relation (which requires

Var(N) ∼ N0), because the geometric distribution is problematic—the most probable particle number is always at
zero, and is not peaked at the mean N0. In this case, we cannot use saddle point approximation in the thermodynamic
limit, and the logarithm of the grand partition function does not reduce to the grand potential1. This is another example
that statistical mechanics fails to reproduce thermodynamics.

The indistinguishable case is well-behaved. Consider a large box of classical ideal gas. By treating a small volume
of the gas as the system and the remaining part as the particle bath, the above result states that the particle number in
the small volume obeys Poisson distribution.

1If you are not sure what this means, see section 1.2 Partition Function and Helmholtz Free Energy in the first recitation note.
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3 Absorption of Classical Ideal Gas
Consider a surface with M (distinguishable) locations to host (classical monoatomic) gas molecules. Each location
can host at most one gas molecule. The binding energy of the gas molecule on the surface is −u < 0. A molecule
vibrates as a harmonic oscillator when it is trapped on the surface and it is fair to neglect the interaction between the
trapped molecules. The goal is to compute the number of particles absorbed on the surface n as a function of number
of locations M , pressure P and temperature T .

We can treat classical ideal gas (system 1) and gas molecules on the surface (system 2) as two systems in equilib-
rium. At equilibrium, T1 = T2 = T and µ1 = µ2.

We first compute the chemical potential of classical ideal gas. We already know the free energy of the classical
ideal gas

F1 = kBTN

[
ln

(
Nλ3T
V

)
− 1

]
, (8)

where λT = (2π~2/mkBT )1/2. The chemical potential is

µ1 =
∂F1

∂N
= kBT ln

(
Pλ3T
kBT

)
, (9)

where we have used the equation of state of classical ideal gas pV = NkBT . The reason why we can compute
chemical potential using the canonical ensemble is the same as the reason why we can compute temperature using
the microcanonical ensemble2. In the thermodynamic limit, all three ensembles are equivalent. We are free to use
whichever is convenient as long as we correctly identifying S ∼ T and N ∼ µ relation.

We then compute the chemical potential of the absorbed gas. We already know the partition function of a quantum
harmonic oscillator is Zhar = [2 sinh(βε/2)]

−1, where ε is the intrinsic frequency of the oscillator. The partition
function of the absorbed gas is

Zn =

(
M

n

)
Znhare

βun. (10)

The free energy is

F2 = −kBT lnZn = −un+ kBT [n lnn+ (M − n) ln(M − n)− n lnZhar] , (11)

where we have used the Stirling’s approximation and neglected n independent terms. The chemical potential is

µ2 =
∂F2

∂n
= −u− kBT lnZhar + kBT ln

(
n

M − n

)
. (12)

Equate Eq. (9) and (12), we have

n

M
=

[
1 +

2kBT

Pλ3T
exp

(
− u

kBT

)
sinh

(
ε

2kBT

)]−1
. (13)

As a sanity check, it is not hard to see 0 ≤ n/M ≤ 1.
First we study the pressure dependence. As pressure increases, n/M also increases. Especially, when P is small,

n/M ∼ P . In the P →∞ limit, the n/M → 1.
We then study the temperature dependence. Since we are working with classical ideal gas, the zero temperature

limit is invalid. The intermediate temperature range is complicated due to the coexistence of many temperature scales.
At large T limit, exp(−u/kBT ) ∼ 1, sinh(ε/2kBT ) ∼ ε/2kBT . Therefore, n/M ∼ T−3/2, i.e., n/M decreases
with increasing the temperature.

2If you are not sure what this means, see section 1 Equivalence of Ensembles in the third recitation note.
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