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1 Common Problems in Psets
There are two common problems with Taylor expansion.

• When the improper integral is absolutely convergent, one is free to switch the order of integration and Taylor
expansion. In this way, there is no need to resort to special functions if only leading order behavior is of interest.
For example, we encounter the following integral in pset 4:∫ 2π

0

dθe−β(−6Jm cos θ). (1)

Near the phase transition point, m is small, and so does the exponent (as long as β is finite). Therefore, to keep
the lowest order of the temperature dependent term:∫ 2π

0

dθe−β(−6Jm cos θ) ≈
∫ 2π

0

dθ
(
1 + 6Jmβ cos θ + 18J2m2β2 cos2 θ

)
= 2π(1 + 9J2m2β2). (2)

In this way, there is no need to know any knowledge about Bessel functions.

• In Taylor expansion, one always neglect small terms, not the other way around. Functions such as e−∆/kBT

cannot be Taylor expanded around T = 0. Note that although it is possible to do Laurent expansion around
T = 0 as

exp

(
− ∆

kBT

)
=

∞∑
n=0

1

n!

(
− ∆

kBT

)n
, (3)

such expansions are usually unhelpful physically because one cannot simply keep the first order term.

Dimensionless integral means a integral whose integrand is dimensionless. If the integral range does not depend
on parameters in the problem, the dimensionless integral is usually just a constant. For example, we encounter the
following integral in pset 6: ∫ +∞

−∞
dδne−Nbδn

4/kBT , (4)

which is not dimensionless because δn has the dimension of density. Since every exponent is dimensionless, we can
change the variable

x =

(
Nb

kBT

)1/4

δn. (5)

x is now dimensionless, and ∫ +∞

−∞
dδne−Nbδn

4/kBT =

(
Nb

kBT

)−1/4 ∫ +∞

−∞
dxe−x

4

. (6)

∫ +∞
−∞ dxe−x

4

, now a dimensionless integral, is just a constant which is often unimportant (one can also evaluate the
integral, which is 2Γ(5/4) ≈ 1.81). By doing the change of variable in this way, it is clear how does the integral scale
with N and T , which is often the behaviors that are of interest.

2 Equivalence of Ensembles
In recitation 3, we have already seen the equivalence of the microcanonical ensemble and the canonical ensemble.
Here we show the equivalence of the canonical ensemble and the grand canonical ensemble. To be concrete, we still
use the absorption of classical ideal gas as the example.

Consider a surface with M (distinguishable) locations to host (classical monoatomic) gas molecules. Each loca-
tion can host at most one gas molecule. The binding energy of the gas molecule on the surface is −u < 0. A molecule
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vibrates as a harmonic oscillator when it is trapped on the surface and it is fair to neglect the interaction between the
trapped molecules. The goal is to compute the number of particles absorbed on the surface n as a function of number
of locations M , pressure P and temperature T .

In the following, we derive µ ∼ n relations using both ensembles.

• Canonical ensemble approach. The partition function of the absorbed gas is

Zn =

(
M

n

)
Znhare

βun. (7)

The free energy is

F = −kBT lnZn = −un+ kBT [n lnn+ (M − n) ln(M − n)− n lnZhar] , (8)

where we have used the Stirling’s approximation and neglected n independent terms. The chemical potential is

µ =
∂F

∂n
= −u− kBT lnZhar + kBT ln

(
n

M − n

)
. (9)

• Grand canonical ensemble approach. The grand partition function of each site is

Ξ1 = 1 + e−β(−u−µ)Zhar. (10)

The grand partition function for the gas on the surface is

Ξ = ΞM1 =
(

1 + e−β(−u−µ)Zhar

)M
. (11)

This can be proved by the definition of the grand partition function:

Ξ =

M∑
n=0

∑
i

e−β(E(i)
n −µn) (12)

=

1∑
n1,...,nM=0

∑
i1,...,iM

exp

[
−β

(
M∑
k=1

E(ik)
nk
− µ

M∑
k=1

nk

)]
(13)

=

M∏
k=1

1∑
nk=0

∑
ik

exp
[
−β
(
E(ik)
nk
− µnk

)]
(14)

=

M∏
k=1

Ξk (15)

=ΞM1 . (16)

The key of the above proof is the independence of the sites, namely E(i)
n =

∑M
k=1E

(ik)
nk . If you are not sure

how we get Eq. (14) from (13), try the simplest example where M = 2:

(Z
(1)
0 + Z

(1)
1 )(Z

(2)
0 + Z

(2)
1 ) = Z

(1)
0 Z

(2)
0︸ ︷︷ ︸

n=0

+Z
(1)
0 Z

(2)
1 + Z

(1)
1 Z

(2)
0︸ ︷︷ ︸

n=1

+Z
(1)
1 Z

(2)
1︸ ︷︷ ︸

n=2

. (17)

The above proof is generally true even if the summation of nk takes from 0 to∞, as long as different sites are
non-interacting.

The number of absorbed gas molecules is

n =
∂ ln Ξ

∂(βµ)
= M

eβ(u+µ)Zhar

1 + eβ(u+µ)Zhar
. (18)

n ∝M because each site is independent. By the linearity of the expectation, 〈n〉 = 〈
∑M
i=1 ni〉 =

∑M
i=1〈ni〉 =

M〈n1〉 we indeed reach the same result.
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One can check that Eq. (9) and (18) are equivalent. In this particular example, both approaches are equally simple.
However, in the example in the pset, this is not the case.

A surface has Ns sites which can adsorb 1 or 2 atoms. It costs no energy to adsorb 1 atom or 2 atoms. The surface
is in contact with a gas of the atoms.

• Canonical ensemble approach.

Zn =
∑

n1+2n2=n

(
Ns
n1

)(
Ns − n1

n2

)
, (19)

then
µ =

∂F

∂N
, (20)

However, the summation in the partition function is difficult to perform (although doable with great care).

• Grand canonical ensemble approach.
Ξ1 = 1 + eβµ + e2βµ. (21)

Since sites are independent, the total grand partition function is

Ξ = ΞNs
1 = (1 + eβµ + e2βµ)Ns . (22)

Then
〈n〉 =

∂ ln Ξ

∂(βµ)
, (23)

which is much simpler.

Keep in mind the above simplification is only true when different sites are non-interacting.

3 Bose-Einstein Distribution
Bose-Einstein distribution is very similar to the chemical potential of molecules on a surface.

1. Different sites on the surface are non-interacting.

2. Each site can host infinite number of gas molecules, instead of 0, 1 or 2, which reflects the nature of bosons. (In
fact, if each site can only host 0 or 1 molecule, we will get the so called Fermi-Dirac distribution, which we will
study later in this course. This reflects the Pauli exclusion principle of fermions. )

3. The “site” becomes the “momentum”: ni → nk.

4. The molecules on each site only has a site-dependent binding energy εk. Other than that, the molecules on each
site are non-interacting: E(ik)

nk = nkεk.

In this way,

Ξk =

∞∑
n=0

e−βn(εk−µ) =
1

1− e−β(εk−µ)
, (24)

and the occupation number of bosons with a specific momentum:

〈nk〉 =
∂ ln Ξk

∂(βµ)
=

1

eβ(εk−µ) − 1
. (25)

This is the so-called Bose-Einstein distribution.
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The grand partition function of the total system is

Ξ =
∏
k

Ξk =
∏
k

1

1− e−β(εk−µ)
, (26)

and the total boson number

N =
∑
k

〈nk〉 = V

∫
ddk

(2π)d
〈nk〉, (27)

which determines the n ∼ µ relation. In general this integral cannot be done analytically. Note that V is necessary in
the identification

∑
k → V

∫
ddk/(2π)d because

∑
k is dimensionless. On the other hand, ddk has dimension [L]−d.

Only V ddk is dimensionless.
Here we make several remarks on the chemical potential in Bose-Einstein distribution.

• Typically, εk ∝ k or k2, and the lowest possible energy a boson can have is zero. Therefore,

〈nk=0〉 =
1

e−βµ − 1
≥ 0. (28)

This requires e−βµ ≥ 1. Since β ≥ 0, chemical potential of bosons must be non-positive µ ≤ 0.

• In some cases, such as phonon gas/black-body radiation/harmonic oscillator modes, one is free to create or
annihilate bosons and the boson number is not conserved. At thermal equilibrium, the boson number is chosen
such that the grand potential is at minimum:

∂Ω

∂N
= 0, (29)

where Ω = −kBT ln Ξ. On the other hand,

µ ≡ ∂Ω

∂N
, (30)

by definition. Therefore, in a boson number non-conserving system, the chemical potential is zero.

An equivalent argument is the following. From the first remark we already know µ ≤ 0. If µ 6= 0, then it
must follow µ < 0. However, this means if the particle number is not-conserved, one can minimize the grand
potential by adding particles nonstop, and at equilibrium there will be infinite number of particles, which is not
physical.

4 Temperature and Chemical Potential as Lagrange Multipliers
We explicitly derive Bose-Einstein distribution from microcanonical ensemble. The number of different ways of
putting nk particles into gk degenerate single particle states for Bose particles is (see [this wikipedia page] if you do
not know how to count states)

Ωk =
(nk + gk − 1)!

nk!(gk − 1)!
. (31)

Then the total entropy the ensemble is
S = kB ln Ω = kB

∑
k

ln Ωk. (32)

In order to compute the thermodynamic property of the system, we need to maximize the entropy with the constraints of
the total energy and the particle number. To do this, we define the Lagrangian and introduce two Lagrange multipliers:

L = S + λ1

(∑
k

εknk − E

)
+ λ2

(∑
k

nk −N

)
. (33)
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Note that we have assumed the system is non-interacting by the constraint E =
∑

k εknk. By solving ∂L/∂nk = 0,
we have

nk =
gk

exp
(
−λ1εk+λ2

kB

)
− 1

. (34)

Note that we have used the Stirling’s approximation. Note that this already has the same functional form of Bose-
Einstein distribution Eq. (25) by identifying

λ1 = − 1

T
, λ2 =

µ

T
. (35)

Therefore, one can see the temperature and the chemical potential can be interpreted as Lagrange multipliers.
From this point of view, it is natural to see why µ = 0 for particle number non-conserving systems. With no

constraint on the particle number, we simply set λ2 = 0, which transfers to µ = 0.
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