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1 Non-interacting Bose Gas
In the last recitation and in the class, we have derived the grand partition function of non-interacting Bose gas:

Ξk =
1

1− e−β(εk−µ)
, (1)

and Ξ =
∏

k Ξk. The Bose-Einstein distribution comes from

〈nk〉 =
ln Ξk

∂(βµ)
=

1

eβ(εk−µ) − 1
, (2)

where µ is determined from the total particle number constraint N =
∑

k〈nk〉.
We are going to study the property of non-interacting Bose gas in detail. First, we need to choose a dispersion

relation for bosons. Here we use quadratic dispersion in three dimensions: Ek = ~2k2/2m and k =
√
k2x + k2y + k2z .

It is straightforward to generalize the calculation to any dimensions with any dispersion relation, which you will do in
the pset.

1.1 Chemical Potential and Bose-Einstein Condensation
We first determine the µ ∼ N relation. It is often convenient to convert the momentum integral to the energy integral.
Note that the energy only depends on the magnitude of the wavevector:

∑
k

= V

∫
d3k

(2π)3
= V

∫ +∞

0

4πk2dk

(2π)3
= V

∫ +∞

0

k2dk

2π2
. (3)

Combined with dE/dk = ~2k/m, we have

k2dk

2π2
=

m

2π2~2
kdE =

m

2π2~2

√
2mE

~2︸ ︷︷ ︸
g(E)

dE, (4)

where
∑

k = V
∫
g(E)dE and g(E) is called the density of states. The particle number constraint becomes

n =
m3/2

√
2π2~3

∫ +∞

0

√
EdE

e−β(E−µ) − 1
=

m3/2

√
2π2~3β3

∫ +∞

0

√
xdx

ex/z − 1
, (5)

where we have changed the variable x = βE and denote z ≡ eβµ, which is the fugacity of the system. Note that the
integral is dimensionless because both x and z are dimensionless. The above expression can be simplified further by
introducing the thermal wavelength λT ≡

√
2π~2/mkBT .

nλ3T =
2√
π

∫ +∞

0

√
xdx

ex/z − 1
= g3/2(z). (6)

The closed-form solution of the integral in general does not exist.
gν(z) is often called the Bose-Einstein function by physicists and polylogarithm functions by mathematicians. It

is often expressed as a series:

g3/2(z) =
2√
π

∫ +∞

0

√
xdx

ex/z − 1
=

2z√
π

∫ +∞

0

e−x
√
x

1− ze−x
dx

=
2z√
π

∫ +∞

0

dxe−x
√
x

∞∑
p=0

zpe−px =
2√
π

∞∑
p=1

zp
∫ +∞

0

dx
√
xe−px =

∞∑
p=1

zp

p3/2
. (7)
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Figure 1: Plot of g3/2(z); Chemical potential µ for fixed density as a function of temperature T ; Number of bosons in
the condensed phase N0 and in the normal phase Nn as functions of temperature T .

In general, gν(z) ≡
∑∞
p=1 z

p/pν .
g3/2(z) is plotted in Fig. 1, which increases monotonically with z and is finite only when |z| ≤ 1. z = 1

corresponds to µ = 0 and g3/2(z) = ζ(3/2) ≈ 2.612. Since z increases monotonically with µ, this is consistent
with the fact that µ ≤ 0 in non-interacting Bose gas (if you don’t know why, check the last recitation note). However,
this also sets an upper limit g3/2(1) on nλ3T . What happens in reality if we have a system of Bose gas with density
nλ3T > g3/2(1), for example, by lowering the temperature under the critical temperature Tc?

kBTc =
2π~2

m

( n

2.612

)2/3
. (8)

At zero temperature, it is rather obvious all the particle will occupy the lowest energy state, which is the zero
momentum k = 0 state. On the other hand, since g(E) ∝

√
E and g(E = 0) = 0, the contribution from the zero

momentum state is completely ignored in the continuity assumption. Therefore, we need to consider the k = 0 state
separately when T < Tc.

N0 =
1

e−βµ − 1
, (9)

or

µ = −kBT ln

(
1 +

1

N0

)
∼ −kBT

N0
. (10)

In the thermodynamic limit, a finite fraction of the bosons are at the zero momentum state, and both N and N0 tends
to infinity. Thus µ = 0. The temperature dependence of µ is plotted in Fig. 1.

The conservation of particle number is then

N = N0 +
∑
k 6=0

1

eβεk − 1
, (11)
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and replace the k summation by continuum integral

n = n0 + nn = 2.612λ−3T , (12)

where n0 is the condensate density and nn is the normal density. With the help of Eq. (6), Equation (12) can also be
rewritten as

n0
n

= 1−
(
T

Tc

)3/2

, (13)

which is plotted in Fig. 1. Note the similarity of the functional form to the magnetization of ferromagnetism transition
near the critical point. There the critical exponent of magnetization is 1/2 instead of 3/2.

It is often said a macroscopic number (i.e. proportional to system size) of bosons are condensed into the zero
momentum state. This phenomenon is called the Bose-Einstein condensation (BEC).

One might question the validity of treating k = 0 state separately while treating all k 6= 0 states as a continuum.
Suppose in a cubic box with side length L, the lowest excited state corresponds to the momentum state k = 2π/L.
Therefore, εk ∼ h2/mL2 ∼ V −2/3h2/m. It follows

N1 =
1

eβ(εk−µ) − 1
∼ 1

eβh2V −2/3/m − 1
= O(V 2/3), (14)

in the V → ∞ limit. On the other hand N0 = O(V ). Therefore N1/N0 = O(V −1/3) → 0 in the thermodynamic
limit, i.e., the occupation of any individual single particle state with k 6= 0 is negligible compared with the special
k = 0 state.

1.2 Internal Energy and Heat Capacity
The internal energy of Bose gas can be computed directly by noting that condensed state does not contribute to the
internal energy:

U = V

∫ +∞

0

Eg(E)dE

eβ(E−µ) − 1
=

3

2
V kBTλ

−3
T g5/2(z). (15)

Therefore,

u =
U

N
=


3

2
kBT

g5/2(z)

g3/2(z)
, T ≥ Tc,

3

2
kB

T 5/2

T
3/2
c

g5/2(1)

g3/2(1)
, T < Tc.

(16)

When T � Tc, according to Eq. (7), both gν(z) ∼ z when z � 1,

u ∼ 3

2
kBT, (17)

which reduces to the result of monoatomic classical ideal gas. This is consistent with the fact that at high temperature
µ� 0 and e−βµ � 1, and the Bose-Einstein distribution reduces to the Boltzmann distribution

〈nk〉 =
1

eβ(εk−µ) − 1
∼ e−β(εk−µ). (18)

When T � Tc, we have u ∼ T 5/2, which is a power law dependence. This reflects the fact that there is no energy
gap existing in the system.

Knowing the internal energy, it is straightforward to compute the heat capacity from CV = (∂U/∂T )V . At low
temperature T � Tc, CV ∼ T 3/2; at high temperature T � Tc, CV ∼ 3kB/2.
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Figure 2: Internal energy per particle u and heat capacity CV as functions of temperature T for Bose gas and classical
ideal gas.

1.3 Pressure and Equation of State
There exists a general relation between the pressure and the internal energy in non-interacting systems. Suppose the
dispersion relation is εk ∼ kα ∼ V −α/d,

p =−
(
∂U

∂V

)
S

(19)

=−
(
∂U

∂V

)
ni,∀i

(20)

=−
∑
i

ni
∂εi
∂V

(21)

=
α

d

∑
i

niεi/V (22)

=
α

d

U

V
. (23)

Equation (19) is equivalent to (20) because entropy is fully determined by the occupation of each state. This relation
does not depend on the underlying statistics of the system, as long as the system is non-interacting such that U =∑
i niεi.
As a consistency check, one can also derive the result using the grand partition function for Bose gas:

Ω = kBT
∑
k

ln(1− e−β(εk−µ)). (24)

It follows

p = −
(
∂Ω

∂V

)
T,µ

= −
∑
k

∂εk
∂V e

−β(εk−µ)

1− e−β(εk−µ)
= −

∑
k

nk
∂εk
∂V

, (25)

which reduces to Eq. (21). Note that this derivation is only true for Bose gas.
In our particular example, α = 2 and d = 3, it follows

pV =
2

3
U. (26)

One can check the validity of this formula for classical monoatomic ideal gas, where U = 3NkBT/2. Equation (26)
reduces to the familar equation of state pV = NkBT .

For non-interacting Bose gas, with Eq. (15),

p =
3

2
kBTλ

−3
T g5/2(z). (27)

5



1.4 Entropty and BEC as Phase Transition
When 0 ≤ T ≤ Tc, the entropy of the system can be computed as

s(T ) =

∫ T

0

CV (T ′)

T ′
dT ′ =

5

2
kB

T 3/2

T
3/2
c

g5/2(1)

g3/2(1)
. (28)

On the other hand, note that Nn ∼ (T/Tc)
3/2, s(T ) can be rewritten as

s(T ) = Nns(Tc) = N0s(0) +Nns(Tc). (29)

The last equality is because s(0) = 0. Equation (29) can be interpreted as that the system is a statistical mixture of the
condensed phase and the normal phase.

The BEC for non-interacting bosons are usually regarded as a first-order phase transition. (Note that this is true
only for non-interacting bosons. BEC of interacting bosons are more complicated. ) There are at least two evidences
that suggest this interpretation:

• No discontinuity of specific heat;

• At any nonzero temperature below Tc, the full thermodynamic property of the system can be described as a
two-phase mixture just like the mixture of vapor and liquid.
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