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1 Second Quantization of Bosons

The field operator of bosons are ψ̂(r) and ψ̂†(r), which obey commutation relations

[ψ̂(r), ψ̂†(r′)] = δ(r− r′), (1)

[ψ̂(r), ψ̂(r′)] = [ψ̂†(r), ψ̂†(r′)] = 0. (2)

In the following, we will drop the hat for simplicity, but we should keep in mind they are operators not functions. In
other words, they are (infinite-dimensional) matrices not vectors or numbers. They do not have values by themselves
but they can produce expectation values when evaluated on states.

We now define several operators from field operators, whose physical meaning will be clear shortly:

ρ̂(r) ≡ ψ†(r)ψ(r), (3)

N̂ ≡
∫
drρ̂(r), (4)

T̂ ≡
∫
drψ†(r)

(
−~2∇2

2m

)
ψ(r) =

~2

2m

∫
dr∇ψ†(r)∇ψ(r), (5)

Û ≡
∫
drU(r)ρ̂(r), (6)

V̂ ≡
∫
drdr′ψ†(r)ψ†(r′)V (r− r′)ψ(r′)ψ(r), (7)

Ĥ ≡T̂ + Û + V̂ . (8)

In Eq. (5), we integrated by parts.

Boson Number Operator We first study the operator N̂ , which is obviously Hermitian. Thus there exists a complete
set of orthonormal basis that are eigenstates of N̂ :

N̂ |ΨN 〉 = N |ΨN 〉 , 〈ΨN |ΨN 〉 = 1. (9)

It is often assumed that there exists a unique ground state called “vacuum” state |0〉 ≡ |Ψ0〉1:

N̂ |0〉 = 0, 〈0|0〉 = 1. (10)

Using the commutation relation Eq. (1), it is not hard to verify

N̂ψ(r) |ΨN 〉 =(N − 1)ψ(r) |ΨN 〉 , (11)

N̂ψ†(r) |ΨN 〉 =(N + 1)ψ†(r) |ΨN 〉 , (12)

which means ψ(r) |ΨN 〉 and ψ†(r) |ΨN 〉 are also eigenstates of N̂ with eigenvalues N − 1 and N + 1 respectively. In
this way, N̂ has eigenvalues 0, 1, 2, . . .. Physically, N̂ is the total boson number, ρ̂(r) is the local boson density, and
ψ̂(r) and ψ̂†(r) annihilates and creates a boson at position r respectively.

Representing states using the occupation number is usually called “second quantization”. The occupation number
is called the “Fock state basis”. It is more convenient to describe many-body quantum states under the Fock state basis.

Wavefunction We now define a function in the normal sense:

ΨN (r1, . . . , rN ) ≡ (N !)−1/2 〈0|ψ(r1) . . . ψ(rN )|ΨN 〉 . (13)

1Depending on the Hamiltonian and the boundary condition the ground state may not be unique. The ground state degeneracy has a deep
connection to the Hamiltonian topology.
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Keep in mind ΨN (r1, . . . , rN ) is a function ofN coordinates while |ΨN 〉 is a state vector. ΨN (r1, . . . , rN ) is nonzero
because boson annihilation operator is applied N times to |ΨN 〉.

First, because of the commutation relation Eq. (2), ΨN (r1, . . . , rN ) is a symmetric function, i.e. invariant under
the permutation of r1, . . . , rN . Second, ΨN (r1, . . . , rN ) is normalized:∫

dr1 . . . drNΨ∗N (r1, . . . , rN )ΨN (r1, . . . , rN ) (14)

=(N !)−1
∫
dr1 . . . drN 〈ΨN |ψ†(rN ) . . . ψ†(r1)|0〉 〈0|ψ(r1) . . . ψ(rN )|ΨN 〉 (15)

=(N !)−1
∫
dr1 . . . drN

∑
n

〈ΨN |ψ†(rN ) . . . ψ†(r1)|Φn〉 〈Φn|ψ(r1) . . . ψ(rN )|ΨN 〉 (16)

=(N !)−1
∫
dr1 . . . drN 〈ΨN |ψ†(rN ) . . . ψ†(r1)ψ(r1) . . . ψ(rN )|ΨN 〉 . (17)

Here
∑

n |Φn〉 〈Φn| = I is a complete set of eigenstates of N̂ . Due to the unique vacuum assumption, unless |Φn〉 =
|0〉, we have 〈Φn|ψ(r1) . . . ψ(rN )|ΨN 〉 = 0. Therefore, one is free to add zero to the expression and can replace the
|0〉 〈0| with identity particularly for the expression above (not true in general!). We then switch the order of taking
expectation and integration, and performs the integral one by one. For example, the first two integrals are:∫

dr1ψ
†(r1)ψ(r1) = N̂ , (18)∫

dr2ψ
†(r2)N̂ψ(r2) =

∫
dr2ψ

†(r2)ψ(r2)(N̂ − 1) = N̂(N̂ − 1). (19)

In this way, ∫
dr1 . . . drNΨ∗N (r1, . . . , rN )ΨN (r1, . . . , rN ) (20)

=(N !)−1 〈ΨN |
∫
dr1 . . . drNψ

†(rN ) . . . ψ†(r1)ψ(r1) . . . ψ(rN )|ΨN 〉 (21)

=(N !)−1 〈ΨN |N̂(N̂ − 1)(N̂ − 2) . . . |ΨN 〉 (22)
=1. (23)

Hamiltonian Operator It is not hard to check [N̂ , Ĥ] = 0. Mathematically, this means one can find a complete set
of orthonormal basis that are eigenstates of N̂ and Ĥ simultaneously. Therefore, we will replace |ΨN 〉 with |ΨN,E〉.

N̂ |ΨN,E〉 = N |ΨN,E〉 , Ĥ |ΨN,E〉 = E |ΨN,E〉 , 〈ΨN,E |ΨN,E〉 = 1. (24)

Using the commutation relation, it is straightforward to verify:

[ψ(ri), Ĥ] =

[
−~2∇2

2m
+ U(ri) +

∫
dr′ψ†(r′)V (ri − r′)ψ(r′)

]
ψ(ri). (25)

With this, one can show

EΨN,E(r1, . . . , rN ) = (N !)−1/2 〈0|ψ(r1) . . . ψ(rN )Ĥ|ΨN 〉 (26)

=

− ~2

2m

N∑
i=1

∇2
i +

N∑
i=1

U(ri) +

N∑
i,j=1

V (ri − rj)

ΨN,E(r1, . . . , rN ), (27)

which is exactly the many-body Schrödinger equation. In this way, ΨN,E(r1, . . . , rN ) is the many-body wavefunction
in the usual “first quantization” sense. As one can see, “first quantization” and “second quantization” descriptions are
equivalent, while second quantization is more succinct.
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2 Bogoliubov Approximation and Gross-Pitaevskii Equation
At low temperature, a macroscopic number of bosons will condense to the zero-momentum state. We can Fourier
transform the field operator:

ψ(r) =
1√
V

b0 +
∑
k6=0

eik·rbk

 . (28)

The Bogoliubov approximation is to replace the zero-momentum operator with numbers:

b0, b
†
0 →

√
N0. (29)

The rationale behind the approximation is that when there are so many bosons at zero momentum, the expectation
value of N̂0(r) ≡ b†0b0 will be so large that it does not matter whether it is N0 or N0 + 1. Also, at thermodynamic
limit the condensed boson number fluctuation will be zero, so it does not matter whether b0 or b†0 change the boson
number. Therefore, we simply set them to numbers.

In this way, the field operator is decomposed as

ψ̂(r) = Φ(r) + ψ̂′(r), (30)

where Φ(r) is a classical field often called the “order parameter” of the BEC or the “wavefunction” of the BEC (the
latter name is very bad and confusing, as ΨN,E(r1, . . . , rN ) is the real many-body wavefunction). The density of
condensed bosons is ρ0(r) = |Φ(r)|2.

If we are only interested in the condensation itself but not excitations, we can completely ignore the remaining
ψ′(r) term. Consider interacting bosons with delta interactions: V (r − r′) = gδ(r − r′). The interaction potential
operator becomes:

V̂ = g

∫
drψ†(r)ψ†(r)ψ(r)ψ(r). (31)

Using Bogoliubov approximation, the Hamiltonian operator also becomes a number:

H =

∫
drΦ∗(r)

(
−~2∇2

2m
+ U(r) + g|Φ(r)|2

)
Φ(r). (32)

Minimizing the energy with respect to δH/δΨ∗(r) = 0, it follows(
−~2∇2

2m
+ U(r) + 2g|Φ(r)|2

)
Φ(r) = 0. (33)

This is the (time-independent) Gross-Pitaevskii (GP) equation. One can also fix the chemical potential instead of the
boson number, and minimize the grand potential. The corresponding GP equation is[

−~2∇2

2m
+ (U(r)− µ) + 2g|Φ(r)|2

]
Φ(r) = 0. (34)
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