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1 Impurity Levels in Semiconductors

1.1 Energy Level in the Hydrogen Atom

The motion of electron in the hydrogen atom is described by the Schrödinger equation(
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)
ψ(r) = Eψ(r). (1)

Its energy levels (for bound states) are
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where

a0 =
4πε0~2

me2
≈ 0.53Å, (3)

is the Bohr radius.

1.2 Hydrogenic Impurities in Semiconductors

Let us consider the silicon, whose band structure is given below:

Figure 1: The silicon band structure calculated by the pseudopotential method.

1



It has a band gap of Eg = Ec−Ev ≈ 1.1 eV. It is helpful to remember the temperature - energy conversion
rule: 1 eV ∼ 10 K. This means in order for the silicon to be conductive due to the thermal excitations, the
temperature should be of order 104 K, which is way beyond the room temperature. Similarly, in order for
the thermal motion to ionize hydrogen atoms, the temperature needs to be even higher (around 105 K).

In order for the silicon to be a good semiconductor at room temperature, it is necessary to dope the
silicon with impurity atoms. Based on the electronic property of the impurity atoms, they can be classified
into

• Donors, which have more valence electrons than the silicon, such as P and As.

• Acceptors, which have fewer valence electrons than the silicon, such as B and Al.

Suppose the silicon is doped with P. P will substitute Si in the crystal structure. The excessive valence
electron in P that cannot form σ bonds with adjacent Si, along with the P+ ion, can be effectively treated
as a hydrogenic atom, with modified effective mass and the dielectric constant. The hydrogenic atom has
energy level

En = − m∗e4

2(4πε0ε~2)

1

n2
. (4)

For silicon, the effective mass is m∗ = 0.2m and the dielectric constant ε = 11.8. It can be estimated that
the bounding energy is only ED = 19.5 meV, instead of 13.6 eV for the real hydrogen. This is the energy
of the localized level below the conduction band. The physical origin of this weak binding is due to the
screening effect of the Coulomb potential due to the remaining valence electrons in P+ and other Si atoms
in the lattice. Note that this energy is in the order of room temperature. The Bohr radius can also be
estimated to be

aD =
4πε0ε~2

m∗e2
=
εm

m∗ a0 ≈ 3 nm. (5)

Compared with the Bohr radius for the real hydrogen, this effective hydrogenic atom is quite large because
of the loose binding. This means with large doping density n > 10−6, these impurity orbitals will overlap
and form a shallow impurity band called donor band below the conduction band.

Similar argument can be made for acceptors doping. There will be an empty acceptor band above the
valence band.

The semiconductor doped with donors are called n-type. “n” represents “negative”, meaning the main
charge carriers (majority carrier) are of negative charge, which are electrons. The holes are minority carriers.
The semiconductor doped with acceptors are called p-type. “p” represents “positive”, meaning the main
charge carriers are of positive charge, which are holes. It is instructive to use the flat band diagram to
represent the energy levels of the donor band and the acceptor band.
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Figure 2: Different types of semiconductors with its flat band diagram. (a) n-type; (b) p-type.

2 Interface Effect

Consider a junction made by two pieces of materials.

• Homojunction. The two materials have the same band structure. For example, p-Si and n-Si.

• Heterojunction. The two materials have different band structures. For example,

– Semiconductor-semiconductor (S-S): GaAs and AlAs;

– Metal-semiconductor (M-S): Ag and n-Si;

– ...

All these junctions play a vital role in lasers and transistors. Indeed, they lay the foundation for the modern
information society. In the following, we will consider the most simple homojunction: the p-n junction
formed between p-Si and n-Si. The underlying physics for more complicated heterojunctions are essentially
the same.

2.1 p-n Junction with Zero Bias

Let us first consider p-Si and n-Si before touching each other.
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Figure 3: p-Si and n-Si before touching each other with their flat band diagram.

The Fermi energies in the two semiconductors are not equal. Therefore, when they contact, the chemical
potential difference will induce electron diffusion from n-Si to p-Si and hole diffusion from p-Si to n-Si. Near
the interface, some diffused electrons and holes recombine to become charge neutral. Therefore, there will
be a thin layer where there is hardly any mobile charge carriers. This is called the “depletion region” in
the p-n junction. Because the electrons diffuse out of n-Si, net positive charges will accumulate in the n-Si
side of the interface. Similarly, there will be net negative charges in the p-Si side of the interface. These net
charges result in a built-in electric field near the interface, pointing from n-Si to p-Si. Due to this electric
field, electrons drift back into the n-Si and holes drift back into the p-Si. In other words, the built-in voltage
is an energy barrier blocking the electron diffusion from n-Si to p-Si, and hole diffusion from p-Si to n-Si.
The final thermal equilibrium state is obtained due to the balance of the diffusion and drift motion. This
process is schematically demonstrated in the following figure:

electron diffusion

hole diffusion

electron drift

electron-hole recombination

hole drift

Figure 4: Diffusion and drift motion of electrons and holes in the p-n junction.

The equilibrium configuration of charge distribution, electric field distribution, electric potential and the
local band structure are shown in the following figure. From a band structure point of view, the built-in
electric field will bend the bands so that the Fermi energies are equal.
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Figure 5: The equilibrium configuration of charge distribution, electric field distribution, electric potential
and local band structure in a p-n junction.

Let us try to relate the electron and hole density in the junction to the built-in voltage.
As discussed above, the current comes from the diffusion Jdif = −D∇n (Fick’s law) and drift motion

Jdri = σE (Ohm’s law) of electrons and holes. At thermal equilibrium, there is no net charge current. Let
us first consider the current of holes. For simplicity, we consider a one-dimensional model.

Jh = σE − eDh
dp

dx
= epµhE − eDh

dp

dx
= 0, (6)
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where we p(x) is the hole density. µh and Dh are the mobility and the diffusion constant for the hole. Note
that the carrier mobility µ for drift velocity v is defined as v = µE, which characterizes how quickly the
carrier can move through a metal or semiconductor, when pulled by an electric field.

We first prove the so called Einstein relation. Because the doped hole density is very small and the
temperature is not very high, the probability that a state in the valence band is occupied by a hole is usually
much smaller than 1. In this case, the Pauli exclusion principle is not effective and the occupation of holes
satisfies Maxwell-Boltzmann relation:

fh(E) = 1− fe(E) =
1

exp
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)
+ 1
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)
. (7)

Therefore, the local density of states of holes is

p(x) = A exp
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)
. (8)

Then Eq. (6) can be rewritten as
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We then integral over x through the depletion region in Eq. (6):
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It is instructive to rewrite it into the following form:

p0
n = p0

pe
−e∆V/(kBT ). (11)

This equation is often called “Boltzmann equation”.
A parallel analysis can be made for electrons. Denote the electron density as n(x). We have

n0
p = n0

ne
−e∆V/(kBT ). (12)

2.2 p-n Junction with Bias

The Boltzmann relation relates the equilibrium carrier density with the built-in potential. We are now going
to discuss the non-equilibrium case.

In the non-equilibrium case, we are mainly interested in the minority carriers, because the number
variation of majority carriers are relatively too few to be significant. That is to say, we are interested in
electrons in p-Si and holes in n-Si.

When the density of minority carriers somehow becomes non-equilibrium, the system tends to relax to
equilibrium. In fact, the thermal equilibrium is a dynamical equilibrium. Every instant, there is equal
number particle-hole pair generation and recombination. In the non-equilibrium case, suppose there are
more holes than the equilibrium. Denote the excessive hole density as ∆p ≡ p− p0. The recombination rate
is ∆p/τ , where τ is the electron-hole pair lifetime.

Apart from the electron-hole recombination, the inhomogeneity of carrier density will also drive a diffusion
within the semiconductor, which is governed by Fick’s law. (In principle, there may also be drift motion
if there is electric field. However, note the Einstein relation Dh/µh = kBT/e. At high temperature the
diffusion dominates over drift motion. ) Therefore, the continuity equation of the carrier density becomes:

∂p

∂t
+∇ · Jh = −∆p

τh
. (13)
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Consider the steady state,
d

dx

(
Dh

dp

dx

)
− ∆p

τh
= 0. (14)

The solution is
∆p = Ae−x/Lh +Bex/Lh , (15)

where Lh =
√
Dhτh is the diffusion length. With boundary condition ∆p(x = 0) = P (excessive holes keep

produced at x = 0) and ∆p(x = +∞) = 0, we have ∆p = Pe−x/Lh .
Now we add bias voltage to the p-n junction. The density distribution becomes non-equilibrium. There

are two scenarios:

• Forward bias. Positive voltage to p-Si. The bias potential cancels the built-in potential.

• Reverse bias. Positive voltage to n-Si. The bias potential enhances the built-in potential.

Let us first consider the forward bias and compute the density of minority carriers. The build-in potential
∆V is now ∆V − V , where V is the biased potential. In this way, the potential barrier for the diffusion is
lowered and the holes will diffuse back into n-Si. The hole density in n-Si is approximately

pn = p0
pe

−e(∆V−V )/(kBT ). (16)

The excessive density is
∆pn = pn − p0

n = p0
n(eeV/(kBT ) − 1). (17)

The depletion region is usually very narrow. We can approximately fix it to be the boundary condition for
the excessive hole diffusion at x = 0, which is the junction interface. Insert Eq. (15), we have

∆pn = p0
n(eeV/(kBT ) − 1)e−x/Lh , (18)

where x > 0 represents the n-Si. The diffusion current is then

Jh = −eDh
d∆pn
dx

=
eDh

Lh
p0
n(eeV/(kBT ) − 1)e−x/Lh . (19)

The diffusion current of electrons in p-Si can be computed similarly:

Je = eDh
d∆np
dx

=
eDe

Le
n0
p(eeV/(kBT ) − 1)ex/Lh , (20)

where x < 0. Therefore, the total current at the interface x = 0 is

J = Jh + Je =

(
eDh

Lh
+
eDe

Le

)
(eeV/(kBT ) − 1) ≡ J0(eeV/(kBT ) − 1). (21)

It is not hard to show for reverse bias, the total current takes the same form while just reversing the sign of
V . This is the current-voltage characteristics for a diode:
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Figure 6: Current-voltage characteristics for a diode.

Diodes primarily conduct in one direction. This property can be used to, say, implement logic circuits.

Figure 7: Diode implementation of OR and AND gates.

Note that while diode logic has the advantage of simplicity, the lack of an amplifying stage in each gate
limits its application.

• Not all logical functions can be implemented in diode logic alone; only the non-inverting logical AND
and logical OR functions can be realized by diode gates.

• If several diode logic gates are cascaded, the voltage levels at each stage are significantly changed, so
one-stage is normally used.

In modern computers, transistors are used to form logic gates. Typical transistors involve metal-oxide-
semiconductor junction (MOS). The analysis of electronic properties of transistors are similar to the p-n
junction.
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