
8.231 Physics of Solids I — Fall 2017
Problem Set 2

Posted: Tuesday, Sep 12, 2017
Due: Tuesday, Sep 19, 2017

Readings (Optional)
• Simon, Steven H. The Oxford Solid State Basics, Chapter 2-6.

• K. S. Novoselov, A. K. Geim, et al. “Electric Field Effect in Atomically Thin Carbon Films”. Science,
306, 666 (2004).

Problem 1
Electronic Density of States
Compute and sketch the density of states per unit volume g(E) in a metal under the following conditions.
g(E) for quadratic dispersion in 3D is already given as an example.
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One should expect a
divergence at E = 0,

called a van-Hove
singularity — if

interested, see Wikipedia
for more details.
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Linear dispersion

E(k) = ℏv|k|
This occurs in graphene.

This occurs in Dirac
semimetals, discovered
only four years ago in
Na3Bi and Cd3As2.

Problem 2
A Phenomenology Model for Optical Property of Solids
In this problem, we will derive a simple phenomenology model to study the optical property of a wide range
of solids. This model, historically known as Lorentz model, is classical and is very crude. Nevertheless, it
characterizes the optical property of many solids qualitatively well.

We will come back to this topic later in this course with a quantum mechanical theory.
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Part I: Driven Damped Harmonic Oscillators Solids are composed of atoms, which are further
composed of nuclei and electrons.

• Assume there is only one electron of charge −q associated with each nucleus of charge q. In other
words, this model should work best for solids with one valence electron.

• Since nucleus is much heavier than the electron, we can set its mass to infinity. The electron has mass
m.

• The force between nuclei and electrons is spring-like. Suppose the displacement of the electron with
respect to the equilibrium is δx, the restoring force is then Frestoring = −kδx.

• The internal collisions between electrons and nuclei are taken into account by a damping force linearly
proportional to the velocity of the electron Fdamping = −mγv, where γ is the damping constant.

(a) According to Newton’s second law, write down the equation of motion when the electron is in an
external electric field E = E0e

−iωtẑ.

(b) Solve the equation of motion with the ansatz δx(ω, t) = x̃(ω)e−iωtẑ. Express x̃(ω) (which is a
complex number) with m, γ, k, q, ω and E0.

Part II: Electromagnetic Waves in Dielectrics The previous part is the microscopic description of
the solid. In this part, we explore how electromagnetic waves propagate in such solids.

(a) The nucleus-electron pair is an electric dipole. Suppose the dipole moment is zero at the equilibrium
position. Write down the dipole moment p as a function of the displacement of electron δx.

(b) Microscopically, many such electric dipoles constitute the dielectrics. The polarization vector of
the dielectrics is just P = Np, where N is the dipole density. For linear dielectric materials (which is the
case here), P = ε0χeE, where χe is the electric susceptibility. Combine the result in Part I, write down the
expression of χe. It should be in the following form:

χe =
ω2
p

(ω2
0 − ω2)− iγω

. (1)

Identify what are ω0 and ωp. In the following, you can express everything with ω0, ωp and γ. ωp is called
the “plasma frequency”. You will see the reason for this name at the end of the problem.

(c) The Maxwell’s equations of electromagnetic wave in dielectrics when there are no free charges or
currents are

∇ ·D =0, (2)
∇ ·B =0, (3)

∇×E =− ∂B

∂t
, (4)

∇×H =
∂D

∂t
, (5)

where D = ε0E+P = εE and H = B/µ. Derive the wave equation for the electric field E and the dispersion
ω(k) of a plane wave in the infinity space.
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(d) The complex refractive index ñ is defined as ñ =
√
(εµ)/(ε0µ0). Suppose the material is non-

magnetic, i.e. the magnetic permittivity is µ = µ0. Express the real and imaginary part of ñ = n+ iκ using
the real and imaginary part of complex electric permittivity ε̃/ε0 = εr + iεi.

(e) Assume the electromagnetic plane wave propagates along z direction. Denote the intensity of the
wave as I(z). The Beer-Lambert law of light absorption is

I(z) = I(0)e−αz, (6)

where α is the absorption coefficient. Express α with κ, ω and c.
(Hint: The intensity of the light is proportional to the square of the wave amplitude |E|2. )

(f) Combine your results in (b) and (d) and express εr and εi as functions of ω. You should obtain a
Lorentzian line shape for εi. Assume ω0 < ωp. Sketch εr and εi as well as n and κ as functions of ω. You
should find κ is maximal around ω0, with a peak width of approximately γ. What is the physical significance
ω0? Is this result within your expectation?

(Hint: You should find the answer in Part I. )

(g) Suppose the electromagnetic wave is incident normally to the dielectric from vacuum. The coefficient
of the reflection is given by (you do not have to derive this)

R =
(1− n)2 + κ2

(1 + n)2 + κ2
. (7)

Sketch R as a function of ω.

Part III: Optical Property of Insulators, Metals and Plasmas

(a) This model characterizes the optical property of insulators when 0 < ω0 < ωp. Fill in the following
table according to your sketches before.

Light frequency ω
Reflection

(strong/weak)
Absorption

(strong/weak)
Net effect

(transmissive/absorptive/reflective)
[0, ω0 − γ)

[ω0 − γ, ω0 + γ)

[ω0 + γ, ωp)

[ωp,+∞)

(b) In the metal, the electrons are delocalized and form the “electron sea”. This corresponds to the
limit of ω0 = 0 in this model, i.e., the vanishing of the restoring force. Again, sketch n, κ and R as functions
of ω, and fill in the following table.

Light frequency ω
Reflection

(strong/weak)
Absorption

(strong/weak)
Net effect

(transmissive/absorptive/reflective)
[0, γ)

[γ, ωp)

[ωp,+∞)

For metals like copper or silver, typically the electron density is N = 1023 cm−3. Estimate the plasma
frequency ωp. What should these metals look like under visible lights? Compare your results with the
following experimental results in Figure 1.
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Figure 1: Reflection coefficient R of aluminum, gold and silver metal mirrors at normal incidence.

(c) In Problem Set 1 we derived the electric permittivity ε̃ for Drude theory. Compare the results above
with those of Drude theory. What is scattering time τ in Drude theory now in the phenomenological model?
In Problem Set 1, we solved the Maxwell’s equations with a free current:

∇×H = Jf +
∂D

∂t
, (8)

by assuming Ohm’s law Jf (ω) = σ(ω)E(ω). However, in Eq. (5) we assume there is no free current. Why
can we obtain the same result from two totally different models? How do you reconcile this paradox?

(d) In the plasma, the electrons are so far away from the nuclei so that there is even no internal collision.
In this case, ω0 = γ = 0. What is the optical property of plasmas?

Ionosphere, from about 60 km to 1,000 km altitude, are composed of plasmas ionized from air molecules
by the ultraviolet sun light. The typical electron density in ionosphere is N = 1012 m−3. Estimate the plasma
frequency ωp. If we want to communicate with a satellite in space by radio wave, what frequency range would
you suggest? If we want to communicate with a radio station beyond the horizon, what frequency range
would you suggest?

(e) What do you think is wrong about this phenomenological model? You can think of it either based
on theory assumptions or based on real life experiences that are not consistent with the results you obtained
above. It is even better you also think up a way to remedy the problem you just raised.

(This is an open problem and it is fine you do not answer it. )
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