
8.231 Physics of Solids I — Fall 2017
Problem Set 3

Posted: Tuesday, Sep 19, 2017
Due: Tuesday, Sep 26, 2017

Readings (Optional)
• Simon, Steven H. The Oxford Solid State Basics, Chapter 9-11.

Note: Bonus problems are more challenging. It is fine you do not solve them. By solving them you can
earn extra credits.

Problem 1
Pauli Paramagnetism
When the magnetic field is applied to electrons, the effects are two-fold:

• Orbital effect. Classically, the electrons will feel the Lorentz force and do cyclotron motion. Quantum-
mechanically, the energy eigenstates form Landau levels.

• Spin effect. The internal spin degrees of freedom will have a Zeeman splitting.

In this problem, we neglect the orbital effect and focus on the spin effect. The Hamiltonian is then given as

H =
p2

2m
+ geµBB · S, (1)

where ge = 2 is the Landé g-factor for the electron, µB ≡ eℏ/(2me) is the Bohr magneton. S is the spin
operator for the electrons whose eigenvalue are ±1/2.

(a) What are the good quantum numbers? What are the energy eigenvalues given good quantum numbers?

(b) What is the density of states g(E)?
(Hint: It is piecewise with different functional form when −µBB ≤ E < µBB and µBB ≤ E. )

(c) The magnetization of the system can be computed by

M = − 1

V

(
∂Φ

∂B

)
µ

, (2)

where Φ ≡ U − TS − µN is the grand potential of the system. First compute Φ at zero temperature
explicitly. Then compute M using Eq. (2). Note that the chemical potential (i.e. Fermi energy) is fixed
when the magnetic field varies.
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(d) The magnetic susceptibility is defined as

χ =
∂M

∂H

∣∣∣∣
B→0

. (3)

Compute χ. Express your result using the density of states at Fermi energy without the magnetic field
g(EF ). By considering everything in the very small B limit, can you obtain the same result without doing
any calculation? Give your argument.

You should find χ > 0, i.e., the induced magnetization is of the same direction as the external magnetic
field. This is why this phenomenon is called “paramagnetism”.

(e) (Bonus) Eq. (2) can actually be simplified to

M = −µB

V
(N↑ −N↓) , (4)

where N↑ and N↓ are the number of electrons whose spin are parallel and anti-parallel with the magnetic
field. (You can use this formula to check your calculation in (c). ) Prove Eq. (4) at T = 0.

(Hint: This problem is not as trivial as it seems to be, since both N↑ and N↓ are functions of B implicitly
and will in principle have non-vanishing B derivatives. )

Problem 2
Friedel Oscillations
In a translationally-invariant system, electron density n(x) = n0 is uniform. This is no longer the case when
a boundary or an impurity is present. A remarkable prediction of quantum theory of metals is that electron
density shows a spatial oscillation that persists to far away from the boundary. This wave-like phenomenon
is known as Friedel oscillations. See the beautiful scanning tunneling microscope images in Figure 1.

Figure 1: The scanning tunneling microscope image of local density of states of the Cu(111) surface. Taken
from M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature, 363, 524 (1993).

To understand the essential physics of Friedel oscillations, let us consider non-interacting electrons in an
one-dimensional system with infinite hardwall boundary at x = 0 and x = L. The goal of this problem is to
calculate the deviation of the electron density from average: ρ(x) = n(x)− n0 due to the boundary effect.
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(a) Solve the energy eigenstates ψk(x), which are standing waves labeled by the good quantum number k.
Specify what are the possible values of k.

(b) Assume there are N electrons and take into account spin degeneracy. Express the Fermi wavevector
kF for the highest occupied state with the average electron density n0.

(c) The observed electron density can be computed by averaging over all the occupied states weighted by
the Fermi-Dirac distribution nF :

n(x) =
∑
k

|ψk(x)|2nF (E(k)), (5)

where E(k) is the energy eigenvalue for ψk. At zero temperature, compute ρ(x) = n(x) − n0. Convert the
summation in Eq. (5) into an integral by taking the limit L → ∞, and evaluate the integral analytically.
Your result should look similar to the right panel of Figure 1.

(d) With dimensional analysis and putting constant prefactors like 2 or π aside, reproduce (c) without
doing any calculation.

(e) (Bonus) Compute Friedel oscillations at finite temperature T ≪ TF . Comment your result in the
T → 0 limit and x≫ 1 limit.

In order to perform the integral analytically, you may linearize the dispersion as E(k)−EF ≃ vF (k−kF ),
where vF = ℏkF /m. You will also find this Fourier transform useful:∫ ∞

−∞
dz

eiλz

1 + cosh(bz)
=

2πλ

b2
1

sinh (πλ/b)
. (6)

3


