
8.231 Physics of Solids I — Fall 2017
Problem Set 8

Posted: Tuesday, Nov 14, 2017
Due: Tuesday, Nov 21, 2017

Readings (Optional)
• L. N. Cooper, “Bound Electron Pairs in a Degenerate Fermi Gas”, Phys. Rev. 104, 1189 (1956).

• J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic Theory of Superconductivity”, Phys. Rev.
106, 162 (1957).

Problem 1
Bose-Einstein Condensation
Consider a large ensemble of N free bosons with dispersion εk = ℏ2k2/(2m). At thermal equilibrium, their
distribution satisfies the Bose-Einstein distribution function:

n(k) =
1

e(εk−µ)/(kBT ) − 1
. (1)

(a) Write down the equation for total particle number conservation. Note here the total boson number N
is fixed and the chemical potential µ is varying and is a function of temperature T .

(b) The chemical potential µ(T ) ≤ 0 in order to make n(k) ≥ 0. Evaluate the temperature Tc when
µ(Tc) = 0 for three dimensional bosons. You will find this integral useful:∫ +∞
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where ζ(z) is the Riemann zeta function.

(c) What happens when T < Tc? What happens when T = 0?

(d) Comment on the Bose-Einstein condensation at one and two dimensions.

Problem 2
Pairing Instability of the Fermi Surface
In this problem, we will repeat the calculation in the seminal paper by Leon N. Cooper back in 1956: Bound
Electron Pairs in a Degenerate Fermi Gas. This paper lies the theoretical foundation of BCS superconduc-
tivity theory.
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Part I: Electrons in the Vacuum First consider two electrons in the vacuum. The Schrödinger equation
of the system is given by (

−ℏ2∇2
1

2m
− ℏ2∇2

2

2m
+ V (r2 − r1)

)
Ψ(r1, r2) = EΨ(r1, r2), (3)

where ri is the position of i-th electron. m is the electron mass.

(a) First rewrite the Schrödinger equation in the center-of-mass frame and consider solutions with zero
center-of-mass momentum. Then expand the wavefunction with plane waves. Show that the Schrödinger
reduces to

2εkΨ(k) +

∫
dk′V (k− k′)Ψ(k′) = EΨ(k). (4)

Identify εk by yourself.

(b) Suppose the interaction potential is V (r) = gV δ(r), where δ(r) is the Dirac delta function. Show
that the Schrödinger equation only has negative energy solutions E < 0. And these solutions exist when
g < 0, i.e. there are bound states only when the potential is attractive.

(Hint: You need to take a cutoff kmax in order for the momentum integral to converge due to the special
form of the delta potential. )

Part II: Electrons in the Metal Now consider a two-electron excitation in the metal, i.e., two electrons
in the metal with momenta above the Fermi momentum. Therefore, the momentum summation in the
Schrödinger equation is now restricted to k > kF because states with k < kF are all occupied by other
electrons in the metal.

(a) Assume kmax ≳ kF so that the density of states is nearly constant D(EF ) throughout the integrand
in Eq. (4). Solve the Schrödinger equation to obtain g(E) and show there always exist E < 2EF solutions
when g < 0 however small |g| is.

(b) Denote the binding energy as εB ≡ 2EF − E and Emax − EF ≡ ℏωD. Estimate εB(g). You may
assume εB(g) is very small.

In a real superconductor, the microscopic origin of the attractive potential is the electron-phonon inter-
action. Thus the energy cutoff ωD is the Debye frequency.

This calculation shows that the total energy of electrons can be lowered if they form the two-electron
bound states instead of forming the Fermi sea, given arbitrarily small attraction. This is called the pair
instability of the Fermi surface.
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