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1 More on Drude Theory

1.1 Hall Effect
1.1.1 Historic Fact @]

The story of the Hall effect begins with a mistake. The story of the Hall effect begins with a
mistake made by James Clerk Maxwell. In the first edition of his book “Treatise on Electricity
and Magnetism”, which appeared in 1873, Maxwell discussed the deflection of a current carrying
wire by a magnetic field. Maxwell then says: It must be carefully remembered that the mechanical
force which urges a conductor .., acts, not on the electric current, but on the conductor which
carries it. If the reader is puzzled that is OK, he should be.

In 1878 Edwin H. Hall, a student at Johns Hopkins University, was reading Maxwell for a class
by Henry A. Rowland. Hall was puzzled by this passage and approached Rowland. Rowland
told him that ... he doubted the truth of Mazwell statement and had sometimes before made a
hasty experiment ... though without success. Hall made a fresh start, and tried to measure the
magnetoresistence — a hard experiment. This experiment failed too and Maxwell appeared to be
safe. Hall then decided to repeat the experiments made by Rowland, and following a suggestion
of his advisor, replaced the original metal bar with a thin gold leaf and found that the magnetic
field deflected the galvanometer needle. This earned Hall a position at Harvard.

1.1.2 How to Measure Hall Effect
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Figure 1: A Hall bar setup to measure Hall effect. Left: Schematic; Right: Scanning electron microscope
image of the Hall bar setup to measure Hall effect in graphene [2].
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Here W is the area of the cross section of the Hall bar. L and D are the lengths of Hall bar at z and y
directions, respectively.

1.1.3 Drude Theory Revisited

The equation of motion in Drude theory is

dp P
— =—¢(E xB)—-=. 4
P —e®B+vxB)- P ()
Here p is interpreted as the averaged momentum of the electron. Let us consider the stationary solution
dp/dt = 0.

Without loss of generality, assume B = Bz and E = E,x + E,y.
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Define the resistivity tensor p as E; =, j pijJj, we have
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Here py = 1/09, 09 = ne*r/m is the DC conductivity in Drude theory. w. = —eB/m is the cyclotron

frequency.
The conductivity tensor o is defined as J; = sz 0;jE;. Thus o = p_l. It can be calculated as
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Here we have defined the dimensionless quantity w.7 to characterize the how “large” is the magnetic
field. It only makes physical sense to talk about “large” or “small” for dimensionless quantities.
For Hall effect, there are several quantities one can measure:

o Hall coefficient

RHE = - (11)

It can tell us the density of the current carrier.



» Hall angle (under the assumption J, = 0)
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It can tell us the scattering time.

Figure E shows the measurement of p,, and Ry for graphene. There is additional voltage at z direction
called the “gate voltage” V,. As we can see, the Hall coefficient even changes sign with V,. There is also a
peak for p,, at the same time Ry changes sign. At least in some regimes of gate voltage, the behavior of
graphene deviates drastically from Drude theory. We will be able to understand what happens in Figure
after first half of this course.
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Figure 2: Measurement of Hall effect in graphene [E]

In the weak field limit w.7 < 1,
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Hall angle 8 = 0. There is only transport along z direction. We reproduce the result of DC conductivity in
Drude theory.

1.1.4 Quantum Hall Effect

What about in the strong field limit w.7 > 17 It seems

0 1
P — PoWeT (1 O) . (14)

Hall angle 8 = 90°. There is only transport along y direction. Do you think Drude theory is still correct at
this regime?
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Figure 3: Typical magnetic field dependence of p,, (red) and Ry (green) in the strong field limit w.r > 1.

1.2 Thermal Conductivity [3]

Temperature gradient induces heat transfer. This can be summarized by the Fourier’s law:
.j = _HVT7 (15)

where j is the thermal current and « is the thermal conductivity.

Suppose temperature only has spatial variation along x direction, i.e. T = T(z). Denote £(T) as the
thermal energy per electron in equilibrium at temperature 7. An electron whose last collision happens at x’
will carry energy £(T'(x')). The electrons arriving at z, on average will have their last collisions at z + v7.
Therefore, the thermal current at position x is given by
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The 1/6 factor is because there are six possible directions of the scattering: +x,+y, +z. For particles at
x £+ vT, only particles scattered to £x contribute to the thermal current at x.

Also notice
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which is the specific heat of the electron. In this way, we can identify
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For classical ideal gas, ¢, = 3nkp/2 and mv?/2 = 3kpT/2 due to equipartition of energy. Therefore
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This is the Wiedemann-Franz law:
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L = k/(oT) is called the Lorenz number of the material. This law is universal, in the sense that all materials
described by Drude theory will have the same Lorenz number, regardless of 7.

For alkali metals, this number agrees well with experiments up to a factor of 2. However, this is due to
pure luck. The classical ideal gas model overestimates the specific heat of electrons about 100 times larger
and underestimates the averaged velocity 100 times smaller.

2 Review of Quantum Statistical Mechanics [4]

2.1 Grandcanonical Ensemble

Consider an isolated system with particle number N and energy E. We divide it into two parts as system
and environment. The system has particle number N7 and energy E;. The environment has particle number
Ny and energy Fy. E = F1+ Fs and N = Ny + Ns. Assume the environment is much larger than the system
so that By <« Fy and N7 < Ns.

Denote Q1 (N1, E1) and Qa(Na, Es) as the number of all possible microscopic states given particle number
and energy for the system and for the environment respectively. The central postulate of statistical mechanics
is the principle of equal a priori probabilities.

For an isolated system at thermal equilibrium, each microstate occurs with equal probability in
the ensemble.

Therefore, for a microstate s in the system, its probability of occurrence is
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Let us expand the logarithmic of Qo(Na, F3) as Ny and Ej:
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Notice a and 8 depend only on the environment. Any system that is in equilibrium with the environment
will have the same « and 8. According to the thermodynamics, these two quantities are in fact
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kp is the Boltzmann constant, u is the chemical potential and T is the temperature.
To summarize, the probability for a system to be in the microstate s with particle number N and energy

E; is
By —uN

The normalization factor = is the grand partition functionm:
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Straightforward calculation gives the expectation value of the some thermodynamical quantities:
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2.2 Bose and Fermi Distribution

Suppose for a given particle, the possible energy eigenstates are specified by the index i. The i-th state has
energy eigenvalue ¢;. The particles are non-interacting so that all of them are distributed independently. The
i-th state has been occupied by n; particles. Since N and E are not fixed in the grand canonical ensemble,
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Here we sum over the energy levels instead of energy eigenstates. g is the degeneracy of energy level €. +
is for fermions and — is for bosons.
The expectation value of particle numbers of energy ¢ is computed as

N = —gk=— INZg Ik (38)

Ja T eatBe + 1
+ corresponds to Fermi-Dirac distribution. — corresponds to Bose-Einstein distribution.
In Figure Y we plot Fermi-Dirac distribution at several temperatures. The chemical potential of Fermi
gas is called “Fermi energy”, and is denoted as Fr.

1In our previous derivation, the total particle number is finite. Since N >> Ny, it is same to push the summation to infinity.
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Figure 4: Fermi-Dirac distribution at various temperatures. The chemical potential is set to be Ep.
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