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1 More on Drude Theory
1.1 Hall Effect
1.1.1 Historic Fact [1]

The story of the Hall effect begins with a mistake. The story of the Hall effect begins with a
mistake made by James Clerk Maxwell. In the first edition of his book “Treatise on Electricity
and Magnetism”, which appeared in 1873, Maxwell discussed the deflection of a current carrying
wire by a magnetic field. Maxwell then says: It must be carefully remembered that the mechanical
force which urges a conductor .., acts, not on the electric current, but on the conductor which
carries it. If the reader is puzzled that is OK, he should be.
In 1878 Edwin H. Hall, a student at Johns Hopkins University, was reading Maxwell for a class
by Henry A. Rowland. Hall was puzzled by this passage and approached Rowland. Rowland
told him that ... he doubted the truth of Maxwell statement and had sometimes before made a
hasty experiment ... though without success. Hall made a fresh start, and tried to measure the
magnetoresistence — a hard experiment. This experiment failed too and Maxwell appeared to be
safe. Hall then decided to repeat the experiments made by Rowland, and following a suggestion
of his advisor, replaced the original metal bar with a thin gold leaf and found that the magnetic
field deflected the galvanometer needle. This earned Hall a position at Harvard.

1.1.2 How to Measure Hall Effect
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We have been able to prepare graphitic
sheets of thicknesses down to a few atomic
layers (including single-layer graphene), to
fabricate devices from them, and to study
their electronic properties. Despite being
atomically thin, the films remain of high
quality, so that 2D electronic transport is
ballistic at submicrometer distances. No
other film of similar thickness is known to
be even poorly metallic or continuous under
ambient conditions. Using FLG, we demon-
strate a metallic field-effect transistor in
which the conducting channel can be
switched between 2D electron and hole gases
by changing the gate voltage.

Our graphene films were prepared by
mechanical exfoliation (repeated peeling) of
small mesas of highly oriented pyrolytic
graphite (15). This approach was found to
be highly reliable and allowed us to prepare
FLG films up to 10 6m in size. Thicker films
(d Q 3 nm) were up to 100 6m across and
visible by the naked eye. Figure 1 shows
examples of the prepared films, including
single-layer graphene Esee also (15)^. To
study their electronic properties, we pro-
cessed the films into multiterminal Hall bar
devices placed on top of an oxidized Si
substrate so that a gate voltage Vg could be
applied. We have studied more than 60
devices with d G 10 nm. We focus on the
electronic properties of our thinnest (FLG)
devices, which contained just one, two, or
three atomic layers (15). All FLG devices
exhibited essentially identical electronic
properties characteristic for a 2D semimetal,
which differed from a more complex (2D
plus 3D) behavior observed for thicker,
multilayer graphene (15) as well as from
the properties of 3D graphite.

In FLG, the typical dependence of its sheet
resistivity D on gate voltage Vg (Fig. 2)
exhibits a sharp peak to a value of several
kilohms and decays to È100 ohms at high Vg

(note that 2D resistivity is given in units of
ohms rather than ohms ! cm as in the 3D
case). Its conductivity G 0 1/D increases
linearly with Vg on both sides of the resistivity
peak (Fig. 2B). At the same Vg where D has its
peak, the Hall coefficient RH exhibits a sharp
reversal of its sign (Fig. 2C). The observed
behavior resembles the ambipolar field effect
in semiconductors, but there is no zero-
conductance region associated with the Fermi
level being pinned inside the band gap.

Our measurements can be explained
quantitatively by a model of a 2D metal
with a small overlap &( between conductance
and valence bands (15). The gate voltage
induces a surface charge density n 0 (0(Vg/te
and, accordingly, shifts the position of the
Fermi energy (F. Here, (0 and ( are the
permittivities of free space and SiO2, respec-
tively; e is the electron charge; and t is the
thickness of our SiO2 layer (300 nm). For

typical Vg 0 100 V, the formula yields n ,
7.2 ! 1012 cmj2. The electric field doping
transforms the shallow-overlap semimetal
into either completely electron or completely
hole conductor through a mixed state where
both electrons and holes are present (Fig. 2).
The three regions of electric field doping are
clearly seen on both experimental and
theoretical curves. For the regions with only

electrons or holes left, RH decreases with
increasing carrier concentration in the usual
way, as 1/ne. The resistivity also follows the
standard dependence Dj1 0 G 0 ne6 (where
6 is carrier mobility). In the mixed state, G
changes little with Vg, indicating the substi-
tution of one type of carrier with another,
while the Hall coefficient reverses its sign,
reflecting the fact that RH is proportional to

Fig. 1. Graphene films. (A) Photograph (in normal white light) of a relatively large multilayer
graphene flake with thickness È3 nm on top of an oxidized Si wafer. (B) Atomic force microscope
(AFM) image of 2 6m by 2 6m area of this flake near its edge. Colors: dark brown, SiO2 surface;
orange, 3 nm height above the SiO2 surface. (C) AFM image of single-layer graphene. Colors: dark
brown, SiO2 surface; brown-red (central area), 0.8 nm height; yellow-brown (bottom left), 1.2 nm;
orange (top left), 2.5 nm. Notice the folded part of the film near the bottom, which exhibits a
differential height of È0.4 nm. For details of AFM imaging of single-layer graphene, see (15). (D)
Scanning electron microscope image of one of our experimental devices prepared from FLG. (E)
Schematic view of the device in (D).

Fig. 2. Field effect in FLG. (A) Typical
dependences of FLG’s resistivity D on
gate voltage for different temperatures
(T 0 5, 70, and 300 K for top to bottom
curves, respectively). (B) Example of
changes in the film’s conductivity G 0
1/D(Vg) obtained by inverting the 70 K
curve (dots). (C) Hall coefficient RH
versus Vg for the same film; T 0 5 K. (D)
Temperature dependence of carrier
concentration n0 in the mixed state
for the film in (A) (open circles), a
thicker FLG film (squares), and multi-
layer graphene (d , 5 nm; solid circles).
Red curves in (B) to (D) are the
dependences calculated from our mod-
el of a 2D semimetal illustrated by
insets in (C).0
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Figure 1: A Hall bar setup to measure Hall effect. Left: Schematic; Right: Scanning electron microscope
image of the Hall bar setup to measure Hall effect in graphene [2].
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Jx =I/W, (1)

Ex =
(V1 − V2) + (V3 − V4)

2L
, (2)

Ey =
(V1 − V3) + (V2 − V4)

2D
. (3)

Here W is the area of the cross section of the Hall bar. L and D are the lengths of Hall bar at x and y
directions, respectively.

1.1.3 Drude Theory Revisited

The equation of motion in Drude theory is

dp

dt
= −e(E+ v ×B)− p

τ
. (4)

Here p is interpreted as the averaged momentum of the electron. Let us consider the stationary solution
dp/dt = 0.

Without loss of generality, assume B = Bẑ and E = Exx̂+ Eyŷ.

−e(Ex + vyBz)−
mvx
τ

=0, (5)

−e(Ey − vxBz)−
mvy
τ

=0. (6)

Since J = −nev, we have

Ex =
m

ne2τ
Jx − B

ne
Jy, (7)

Ey =
B

ne
Jx +

m

ne2τ
Jy. (8)

Define the resistivity tensor ρ as Ei =
∑

ij ρijJj , we have

ρ =

 m

ne2τ
− B

ne
B

ne

m

ne2τ

 = ρ0

(
1 −ωcτ

ωcτ 1

)
. (9)

Here ρ0 = 1/σ0, σ0 = ne2τ/m is the DC conductivity in Drude theory. ωc = −eB/m is the cyclotron
frequency.

The conductivity tensor σ is defined as Ji =
∑

ij σijEj . Thus σ = ρ−1. It can be calculated as

σ =
σ0

1 + (ωcτ)2

(
1 ωcτ

−ωcτ 1

)
. (10)

Here we have defined the dimensionless quantity ωcτ to characterize the how “large” is the magnetic
field. It only makes physical sense to talk about “large” or “small” for dimensionless quantities.

For Hall effect, there are several quantities one can measure:

• Hall coefficient
RH ≡ Ey

BJx
= − 1

ne
. (11)

It can tell us the density of the current carrier.
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• Hall angle (under the assumption Jy = 0)

tan θ ≡ Ey

Ex
=

ρyx
ρxx

= ωcτ. (12)

It can tell us the scattering time.

Figure 2 shows the measurement of ρxx and RH for graphene. There is additional voltage at z direction
called the “gate voltage” Vg. As we can see, the Hall coefficient even changes sign with Vg. There is also a
peak for ρxx at the same time RH changes sign. At least in some regimes of gate voltage, the behavior of
graphene deviates drastically from Drude theory. We will be able to understand what happens in Figure 2
after first half of this course.

We have been able to prepare graphitic
sheets of thicknesses down to a few atomic
layers (including single-layer graphene), to
fabricate devices from them, and to study
their electronic properties. Despite being
atomically thin, the films remain of high
quality, so that 2D electronic transport is
ballistic at submicrometer distances. No
other film of similar thickness is known to
be even poorly metallic or continuous under
ambient conditions. Using FLG, we demon-
strate a metallic field-effect transistor in
which the conducting channel can be
switched between 2D electron and hole gases
by changing the gate voltage.

Our graphene films were prepared by
mechanical exfoliation (repeated peeling) of
small mesas of highly oriented pyrolytic
graphite (15). This approach was found to
be highly reliable and allowed us to prepare
FLG films up to 10 6m in size. Thicker films
(d Q 3 nm) were up to 100 6m across and
visible by the naked eye. Figure 1 shows
examples of the prepared films, including
single-layer graphene Esee also (15)^. To
study their electronic properties, we pro-
cessed the films into multiterminal Hall bar
devices placed on top of an oxidized Si
substrate so that a gate voltage Vg could be
applied. We have studied more than 60
devices with d G 10 nm. We focus on the
electronic properties of our thinnest (FLG)
devices, which contained just one, two, or
three atomic layers (15). All FLG devices
exhibited essentially identical electronic
properties characteristic for a 2D semimetal,
which differed from a more complex (2D
plus 3D) behavior observed for thicker,
multilayer graphene (15) as well as from
the properties of 3D graphite.

In FLG, the typical dependence of its sheet
resistivity D on gate voltage Vg (Fig. 2)
exhibits a sharp peak to a value of several
kilohms and decays to È100 ohms at high Vg

(note that 2D resistivity is given in units of
ohms rather than ohms ! cm as in the 3D
case). Its conductivity G 0 1/D increases
linearly with Vg on both sides of the resistivity
peak (Fig. 2B). At the same Vg where D has its
peak, the Hall coefficient RH exhibits a sharp
reversal of its sign (Fig. 2C). The observed
behavior resembles the ambipolar field effect
in semiconductors, but there is no zero-
conductance region associated with the Fermi
level being pinned inside the band gap.

Our measurements can be explained
quantitatively by a model of a 2D metal
with a small overlap &( between conductance
and valence bands (15). The gate voltage
induces a surface charge density n 0 (0(Vg/te
and, accordingly, shifts the position of the
Fermi energy (F. Here, (0 and ( are the
permittivities of free space and SiO2, respec-
tively; e is the electron charge; and t is the
thickness of our SiO2 layer (300 nm). For

typical Vg 0 100 V, the formula yields n ,
7.2 ! 1012 cmj2. The electric field doping
transforms the shallow-overlap semimetal
into either completely electron or completely
hole conductor through a mixed state where
both electrons and holes are present (Fig. 2).
The three regions of electric field doping are
clearly seen on both experimental and
theoretical curves. For the regions with only

electrons or holes left, RH decreases with
increasing carrier concentration in the usual
way, as 1/ne. The resistivity also follows the
standard dependence Dj1 0 G 0 ne6 (where
6 is carrier mobility). In the mixed state, G
changes little with Vg, indicating the substi-
tution of one type of carrier with another,
while the Hall coefficient reverses its sign,
reflecting the fact that RH is proportional to

Fig. 1. Graphene films. (A) Photograph (in normal white light) of a relatively large multilayer
graphene flake with thickness È3 nm on top of an oxidized Si wafer. (B) Atomic force microscope
(AFM) image of 2 6m by 2 6m area of this flake near its edge. Colors: dark brown, SiO2 surface;
orange, 3 nm height above the SiO2 surface. (C) AFM image of single-layer graphene. Colors: dark
brown, SiO2 surface; brown-red (central area), 0.8 nm height; yellow-brown (bottom left), 1.2 nm;
orange (top left), 2.5 nm. Notice the folded part of the film near the bottom, which exhibits a
differential height of È0.4 nm. For details of AFM imaging of single-layer graphene, see (15). (D)
Scanning electron microscope image of one of our experimental devices prepared from FLG. (E)
Schematic view of the device in (D).

Fig. 2. Field effect in FLG. (A) Typical
dependences of FLG’s resistivity D on
gate voltage for different temperatures
(T 0 5, 70, and 300 K for top to bottom
curves, respectively). (B) Example of
changes in the film’s conductivity G 0
1/D(Vg) obtained by inverting the 70 K
curve (dots). (C) Hall coefficient RH
versus Vg for the same film; T 0 5 K. (D)
Temperature dependence of carrier
concentration n0 in the mixed state
for the film in (A) (open circles), a
thicker FLG film (squares), and multi-
layer graphene (d , 5 nm; solid circles).
Red curves in (B) to (D) are the
dependences calculated from our mod-
el of a 2D semimetal illustrated by
insets in (C).0
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Figure 2: Measurement of Hall effect in graphene [2].

In the weak field limit ωcτ ≪ 1,
ρ → ρ0

(
1 0
0 1

)
. (13)

Hall angle θ = 0. There is only transport along x direction. We reproduce the result of DC conductivity in
Drude theory.

1.1.4 Quantum Hall Effect

What about in the strong field limit ωcτ ≫ 1? It seems

ρ → ρ0ωcτ

(
0 1
1 0

)
. (14)

Hall angle θ = 90◦. There is only transport along y direction. Do you think Drude theory is still correct at
this regime?

3



Figure 3: Typical magnetic field dependence of ρxx (red) and RH (green) in the strong field limit ωcτ ≫ 1.

1.2 Thermal Conductivity [3]
Temperature gradient induces heat transfer. This can be summarized by the Fourier’s law:

j = −κ∇T, (15)

where j is the thermal current and κ is the thermal conductivity.
Suppose temperature only has spatial variation along x direction, i.e. T = T (x). Denote E(T ) as the

thermal energy per electron in equilibrium at temperature T . An electron whose last collision happens at x′

will carry energy E(T (x′)). The electrons arriving at x, on average will have their last collisions at x ± vτ .
Therefore, the thermal current at position x is given by

jx =
nv

6
[E(T (x− vτ))− E(T (x+ vτ))] (16)

=
nv2τ

3

dE
dT

(
−dT

dx

)
. (17)

The 1/6 factor is because there are six possible directions of the scattering: ±x,±y,±z. For particles at
x± vτ , only particles scattered to ±x contribute to the thermal current at x.

Also notice
n
dE
dT

=
N

V

dE
dT

=
1

V

dE

dT
= cv, (18)

which is the specific heat of the electron. In this way, we can identify

κ =
1

3
v2τcv, (19)

For classical ideal gas, cv = 3nkB/2 and mv2/2 = 3kBT/2 due to equipartition of energy. Therefore

κ =
3

2
k2BT

nτ

m
=

3

2

(
kB
e

)2

σ. (20)
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This is the Wiedemann-Franz law:

κ

σT
=

3

2

(
kB
e

)2

≈ 2.22× 10−8 WΩ/K2. (21)

L ≡ κ/(σT ) is called the Lorenz number of the material. This law is universal, in the sense that all materials
described by Drude theory will have the same Lorenz number, regardless of τ .

For alkali metals, this number agrees well with experiments up to a factor of 2. However, this is due to
pure luck. The classical ideal gas model overestimates the specific heat of electrons about 100 times larger
and underestimates the averaged velocity 100 times smaller.

2 Review of Quantum Statistical Mechanics [4]
2.1 Grandcanonical Ensemble
Consider an isolated system with particle number N and energy E. We divide it into two parts as system
and environment. The system has particle number N1 and energy E1. The environment has particle number
N2 and energy E2. E = E1+E2 and N = N1+N2. Assume the environment is much larger than the system
so that E1 ≪ E2 and N1 ≪ N2.

Denote Ω1(N1, E1) and Ω2(N2, E2) as the number of all possible microscopic states given particle number
and energy for the system and for the environment respectively. The central postulate of statistical mechanics
is the principle of equal a priori probabilities.

For an isolated system at thermal equilibrium, each microstate occurs with equal probability in
the ensemble.

Therefore, for a microstate s in the system, its probability of occurrence is

ρs(N1, E1) =
Ω2(N2, E2)

Ω1(N1, E1)Ω2(N2, E2)
. (22)

Let us expand the logarithmic of Ω2(N2, E2) as N1 and E1:

lnΩ2(N −N1, E − E1) ≈ lnΩ2(N,E)−
(
∂ lnΩ2(N,E)

∂N

)
N1 −

(
∂ lnΩ2(N,E)

∂E

)
E1. (23)

Denote

α =
∂ lnΩ2(N,E)

∂N
, (24)

β =
∂ lnΩ2(N,E)

∂E
, (25)

Ξ =Ω1(N1, E1). (26)

Eq. (22) can be rewritten into
ρs(N1, E1) =

1

Ξ
e−αN1−βE1 . (27)

Notice α and β depend only on the environment. Any system that is in equilibrium with the environment
will have the same α and β. According to the thermodynamics, these two quantities are in fact

α =− µ

kBT
, (28)

β =
1

kBT
. (29)
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kB is the Boltzmann constant, µ is the chemical potential and T is the temperature.
To summarize, the probability for a system to be in the microstate s with particle number N and energy

Es is
ρNs =

1

Ξ
exp

(
−Es − µN

kBT

)
. (30)

The normalization factor Ξ is the grand partition function1:

Ξ =

∞∑
N=0

∑
s

exp

(
−Es − µN

kBT

)
. (31)

Straightforward calculation gives the expectation value of the some thermodynamical quantities:

N̄ =
∑
N

∑
s

NρNs =
1

Ξ

∑
N

∑
s

Ne−αN−βEs = − ∂

∂α
ln Ξ. (32)

Ē =
∑
N

∑
s

EsρNs =
1

Ξ

∑
N

∑
s

Ese
−αN−βEs = − ∂

∂β
ln Ξ. (33)

2.2 Bose and Fermi Distribution
Suppose for a given particle, the possible energy eigenstates are specified by the index i. The i-th state has
energy eigenvalue ϵi. The particles are non-interacting so that all of them are distributed independently. The
i-th state has been occupied by ni particles. Since N and E are not fixed in the grand canonical ensemble,

Ξ =
∑
{ni}

e−
∑

i(α+βϵi)ni =
∏
i

Ξi, (34)

where Ξi is the grand partition function for state i.

Ξi =
∑
ni

e−(α+βϵi)ni =


1

1− e−α−βϵi
Boson,

∑∞
ni=0,

1 + e−α−βϵi Fermion,
∑1

ni=0 .
(35)

Thus

Ξ =
∏
k

[
1± e−α−βϵk

]±gk
, (36)

ln Ξ =±
∑
k

gk ln
(
1± e−α−βϵk

)
. (37)

Here we sum over the energy levels instead of energy eigenstates. gk is the degeneracy of energy level ϵk. +
is for fermions and − is for bosons.

The expectation value of particle numbers of energy ϵk is computed as

n̄k = −gk
∂

∂α
ln Ξk =

gk
eα+βϵk ± 1

. (38)

+ corresponds to Fermi-Dirac distribution. − corresponds to Bose-Einstein distribution.
In Figure 4 we plot Fermi-Dirac distribution at several temperatures. The chemical potential of Fermi

gas is called “Fermi energy”, and is denoted as EF .
1In our previous derivation, the total particle number is finite. Since N ≫ N1, it is same to push the summation to infinity.

6



Figure 4: Fermi-Dirac distribution at various temperatures. The chemical potential is set to be EF .
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