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1 Phonon Bands: Lattice Vibration
We have been considering the electrons in the solids throughout the beginning of this course. From now on,
we will digress a little bit to consider the property of nuclei.

Nuclei are much heavier compared with electrons. They form the lattice and normally just vibrate
around their equilibrium positions. To capture the physics of lattice vibration, we model the lattice as a
one-dimensional chain of masses connected by springs. The mass of the nucleus is m and the lattice constant
is κ. The nuclei spacing at equilibrium is a. Here we assume there are L nuclei and take periodic boundary
condition. The position of n-th nuclei is denoted as xn.

The Lagrangian of this system is
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ẋ2
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2
]
. (1)

The equations of motion of nuclus n is given by

d

dt

∂L

∂ẋn
− ∂L

∂xn
= 0, (2)

which is
mẍn + κ(2xn − xn+1 − xn) = 0. (3)

As usual, we try to solve the motion by using ansatz xn = Ae−i(ωt−kna). The equation of motion becomes
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2

)
. (4)

The dispersion relation is
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√
κ

m

∣∣∣∣sin(ka

2

)∣∣∣∣ , (5)
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Figure 1: Dispersion of a one-dimensional harmonic chain.

It is not hard to see the possible k-mode specified by the periodic condition is the same as the one-
dimensional tight-binding chain, i.e.,

k =
2πm

La
, m is an integer. (6)

Restricted to the Brillouin zone ka ∈ [−π, π], there are exactly L different modes.
We can quantize these vibration modes. The energy eigenvalues for quantum harmonic oscillator are

En = ℏω
(
n+

1

2

)
, n = 0, 1, 2, . . . . (7)

Therefore, every given k-mode corresponds to the energy eigenstates

En(k) = ℏω(k)
(
n+

1

2

)
, n = 0, 1, 2, . . . . (8)

These vibration quantum is called phonon (Greek word for “sound” or “voice”). They are responsible for
properties of solids like the elasticity or sound velocity. For example, the sound velocity for long wavelength
sound waves is

v =
ω

k
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k→0

= a

√
κ

m
. (9)

The reason why we consider long wavelength limit is that here unit length is a, which is the lattice spacing.
This is a very small quantity (usually around a nanometer), compared with the usual sound wavelength in
real life (usually several meters).

Just like electrons forming electron bands, phonons in the lattice also form bands, as shown above. Note
that at band bottom, the phonon dispersion is linear while the electron dispersion is quadratic.

An important difference between phonons and electrons are that phonons are bosons. There is no Pauli
exclusion principle for phonons, and each mode can be occupied by several phonons. The occupying number
is determined by Bose-Einstein distribution:

nB.E.(E) =
1

eE/(kBT ) − 1
. (10)

Also, unlike electrons, the number of phonons are not conserved. At T = 0, there will be no phonons—the
lattice froze perfectly.
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