
8.231 Physics of Solids I — Fall 2017
Recitation 5

Huitao Shen

October 20, 2017

1 Electrons in Magnetic Field
1.1 Classical Mechanics
The Hamiltonian of the electron is

H =
1

2m
Π2 =

1

2m

(
p− e

c
A
)2

, (1)

where m is the electron mass. Π is called the mechanical/kinetic momentum. p is called the canonical
momentum, which is not a conserved quantity in the presence of the magnetic field. A is the vector potential
that satisfies ∇×A = B.

The Hamiltonian equations of motion is

ẋ =
∂H

∂p
=

1

m

(
p− e

c
A
)
, (2)

ṗ =− ∂H

∂x
=

e

mc

(
p− e

c
A
)
· ∇A. (3)

Straightforward calculation gives

ẍ =
e

mc
(v · ∇A− (v · ∇)A) =

e

mc
(v ×B), (4)

which is just the Lorentz force without the electric field. The solution is a cyclotron motion with radius r
and angular frequency ω being

r =
mv

eB
, ω =

eB

mc
. (5)

r is called the “cyclotron radius” and ω is called the “cyclotron frequency”.

1.2 Quantum Mechanics
1.2.1 Energy Spectrum

In quantum mechanics, we impose quantize the canonical commutation relation [xi, pj ] = ihδij . It is impor-
tant to notice that the mechanical momenta do not commute with each other:

[Πx,Πy] =
ieℏ
c

(
∂Ay

∂x
− ∂Ax

∂y

)
=
ieℏ
c
Bz. (6)
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From this we can define the upper and lower operators:

a =

√
c

2eℏB
(Πx + iΠy) , a† =

√
c

2eℏB
(Πx − iΠy) . (7)

It is straightforward to prove the commutation relation [a, a†] = 1. Also it is not hard to observe the
Hamiltonian Eq. (1) can be rewritten as

H = ℏω
(
a†a+

1

2

)
, (8)

where ω is the cyclotron frequency. This is exactly the same Hamiltonian as the harmonic oscillator. Denote
the eigenstate of a†a as |N⟩. We have the energy spectrum

H |N⟩ = ℏω
(
N +

1

2

)
|N⟩ . (9)

These energy eigenstates are called Landau levels. N is the Landau level index. The effects of upper and
lower operators are

a† |N⟩ =
√
N + 1 |N + 1⟩ , a |N⟩ =

√
N |N − 1⟩ . (10)

Semi-classical Consideration It is also possible to obtain the spectrum Eq. (9) through a semi-classical
approach. According to Sommerfield quantization, for a given orbital of the electron cyclotron motion, we
have (

N +
1

2

)
h =

∮
p · dr (11)

=

∮ (
mv +

e

c
A
)
· dr (12)

=2πmvr − e

c
Bπr2 (13)

=2πmvr − πmωr2. (14)

Thus
E =

1

2
mv2 =

(
N +

1

2

)
ℏω. (15)

The fact that even the ℏω/2 zero point energy is correctly considered is just a coincidence.

Choices of Vector Potential To this end, we have not specified the form of the vector potential A. In
fact, the choice of the vector potentials is not unique, as any gauge transformation A → A +∇φ will not
effect the magnetic field. There are two common types of the vector potential:

A = (Ax, Ay) =


B(−y, x)/2, symmetric gauge,
B(−y, 0),
B(0, x),

Landau gauge.
(16)

Symmetric gauge preserves the rotational symmetry and the Landau gauge preserves the translational sym-
metry. It is impossible to choose a gauge that preservers both symmetries.

The choice of the gauge will not effect the physical observables, which are by definition gauge invariant.
A wise choice of the gauge will make life easier when solving particular problems. In the following, we will
compute the wavefunction under both gauges.
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1.3 Symmetric Gauge
Under symmetry gauge, the lower operator in Eq. (7) becomes

a =

√
c

2eℏB

[
−ℏi

(
∂

∂x
+ i

∂

∂y

)
− eB

2c
(−y + ix)

]
= −i

√
ℏc
2eB

(
2
∂

∂z̄
− eB

2ℏc
z

)
, (17)

where

z ≡ x+ iy, ∂ ≡ ∂

∂z
≡ 1

2

(
∂

∂x
− i

∂

∂y

)
,

z̄ ≡ x− iy, ∂̄ ≡ ∂

∂z̄
≡ 1

2

(
∂

∂x
+ i

∂

∂y

)
.

(18)

The ground state is determined by a |0⟩ = 0. Denote the wavefunction of the ground state as ⟨z, z̄|0⟩ ≡
ψ0(z, z̄). This gives the differential equation(

2
∂

∂z̄
− eB

2ℏc
z

)
ψ0(z, z̄) = 0. (19)

The solution is
ψ0(z, z̄) = f(z) exp

(
−eBz̄z

4ℏc

)
= f(z) exp

(
− z̄z

4l2

)
, (20)

where f(z) is any continuous function is z so that ψ0(z, z̄) does not blow up at z = 0 and z = ∞. l ≡√
ℏc/(eB) is called the “magnetic length”.

Ground State Degeneracy The arbitrariness of the f(z) immediately suggests there is huge degeneracy
for at least ground state. It is convenient to choose f(z) to be the n-th polynomial of z:

ψ0,n(z, z̄) = Nnz
n exp

(
− z̄z

4l2

)
, (21)

where Nn is the normalization factor. n needs to be an non-negative integer to ensure the boundary condition
at r = 0 and the single-valuedness. In fact, n is also the eigenvalue of the canonical angular momentum:

Lz = xpy − ypx = ℏ(z∂ − z̄∂̄), (22)

and Lzψ0,n = nℏψ0,n. This is a reflection of the rotational invariance of the wavefunction. Note that Lz is
not a gauge invariant quantity, and is thus not physical. The physical angular momentum is the mechanical
angular momentum:

Lz = xΠy − yΠz = Lz −
eB

2c
r2, (23)

where r2 = x2+y2 = z̄z. It is not hard to prove the expectation value of this mechanical angular momentum
for the ground state: ⟨0, n|Lz|0, n⟩ = −ℏ, which is indenpendent of n.
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Figure 1: The radial distribution of |ψ0,n|2 for n = 0, 1, 2, 3, 4, 5.

The radial probability distribution of |ψ0,n|2 is shown in Figure 1. In fact, the probability is peaked at
r2max = (2n+ 1)l2. This speculation is helpful to count the degeneracy of the state. Suppose the system is a
a disk with radius R. Since ψ0,n peaks at r2max = (2n+ 1)l2, we should have r2max < R21. This means

n ≤ R2

2l2
=
eΦ

hc
, (24)

where Φ = πR2B is the magnetic flux of the system, and hc/e is the flux quantum. Each state will occupy
a flux quantum.

Excited States The excited states can be obtained by acting a† to the ground state:

ψ1,n = a†ψ0,n = −i 1√
2l

(
2n− z̄z

l2

)
Nnz

n−1 exp
(
− z̄z

4l2

)
. (25)

It is not hard to show that Lzψ1,n = (n− 1)hψ1,n and ⟨1, n|Lz|1, n⟩ = −3ℏ, also indenpendent of n. Similar
degeneracy counting can be carried out and the higher Landau levels have the same degeneracy D = eΦ/(hc).

1.4 Landau Gauge
Under Landau gauge (say A = B(−y, 0)), the lower operator in Eq. (7) becomes

a =

√
ℏc
2eB

[
−i ∂
∂x

+

(
∂

∂y
+
y

l2

)]
. (26)

Note that there is no x dependence, kx is a conserved quantity and we can choose the ground state wave-
function to be ψ0,kx

(x, y) = eikxxψ0(y). In this way,

a =

√
ℏc
2eB

[
kx +

(
∂

∂y
+
y

l2

)]
. (27)

The ground state wavefunction a |0⟩ = 0 becomes[
kx +

(
∂

∂y
+
y

l2

)]
ψ0(x) = 0, (28)

1Of course, this counting is not exact. Here we are applying hard wall boundary condition, which requires the wavefunction
to vanish at r = R. However, when we obtain Eq. (20), we actually only require the solution to vanish at infinity so that the
wavefunction is normalizable. As long as R is large enough, we should expect this counting to be accurate enough.
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which can be solved as
ψ0,kx

(x, y) = Nkx
exp

[
ikxx− 1

2l2
(
y + kxl

2
)2]

, (29)

where Nkx is the normalization factor. The probability distribution of |ψ0,kx |2 is obviously peaked at y =
−kxl2.

We can count the degeneracy similar as what we have done under symmetric gauge. Now suppose the
system is a rectangle with size Lx × Ly. −kxl2 ∈ [0, Ly] so that the peak of the wavefunction is within the
system. On the other hand, the possible ky states of plane wave are specified by kx = 2πn/Lx. Combine
these two, we get

n ≤ LxLy

2πl2
=
eΦ

hc
, (30)

which is exactly the same as Eq. (24).
The excited states can be obtained by acting a† to the ground state. They have the same degeneracy as

the ground state.

2 Integer Quantum Hall Effect
In recitation 1, we introduced the integer quantum Hall effect. Under strong magnetic field, the Hall
conductivity forms several plateaus, where the Hall conductivity is quantized

σxy = ν
e2

h
. (31)

Figure 2: Typical magnetic field dependence of ρxx (red) and RH (green) in the strong field limit.

We will try to (partially) understand this phenomenon with the Landau level we solved. The argument
is due to Laughlin, and is thus called “Laughlin gauge argument”[1, 2].
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2.1 Problem Setup

Figure 3: Geometry of the Hall bar (left) and the cylinder geometry in Laugh;in’s gauge argument (right).

The geometry of the Hall bar where we measure the Hall effect experimentally is shown in Figure 3. Instead
of imposing an external electric field on x direction, we make the system periodic along x direction and
thread magnetic flux Φ through the cylinder. When the flux is varied slowly, we should expect an induced
electric field along x direction as if there is an external electric field. The full Hamiltonian of the system is
then

H =
1

2m

(
Π2

x +Π2
y

)
− eEyy (32)

=
1

2m

[(
ℏkx +

eBy

c
− eA0

c

)2

+ p2y

]
− eEyy (33)

=
1

2m

[(
ℏkx +

eBy

c
− eΦ

cLx
− mc

eB
eEy

)2

+ p2y

]
+

ℏckxEy

B
+
mc2E2

y

2B2
. (34)

Here A0 is the vector potential accounting for the threaded flux: Φ = A0Lx according to the Aharonov-Bohm
effect. In the last equation, we complete the square to absorb the electric field along y direction into the
mechanical momentum. An important observation is that

∂H

∂Φ
= − e

mcLx

(
ℏkx +

eBy

c
− eΦ

cLx
− mc

eB
eE

)
=

−eΠx

mcLx
=
jx
c
, (35)

which says change the flux induces a current in the y direction. This is just the Faraday’s law of induction.
Although the system is very complicated, we end up getting a Hamiltonian exactly in the same form of

the Landau level under Landau gauge. Then we can immediately write down the ground state wavefunction

ψ0,kx,Φ(x, y) = Nkx,Φ exp

[
ikxx− 1

2l2

(
y + kxl

2 − Φ

BLx
−m

( c

eB

)2

eE

)2
]
. (36)

Excited states can be obtained by applying a† operators.
The energy for the N -th Landau level is then

EN = ℏω
(
N +

1

2

)
+

ℏckxEy

B
+
mc2E2

y

2B2
. (37)
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2.2 Laughlin’s Gauge Argument
Suppose we change the flux adiabatically by a flux quantum ∆Φ = hc/e. Then in the exponent of the
wavefunction Eq. (36) (which holds true for ground state and all excited states):

y + kxl
2 − Φ

BLx
→ y +

(
kx − 2π

Lx

)
l2 − Φ

BLx
. (38)

The momenta of all the occupied states change by 2π/Lx. Then according to Eq. (37), the energy changes
per Landau level is

∆E = D
ℏcEy

B

2π

Lx
= eEyLy = eVy. (39)

This exactly means we transfer one electron from one edge to another per Landau level.
On the other hand, according to Feynman-Hellman theorem:

⟨N, kx,Φ|
∂H

∂Φ
|N, kx,Φ⟩ =

∂EN

∂Φ
. (40)

Insert Eq. (35),

jx = c
∆E

∆Φ
= c

neVy
hc/e

=
ne2

h
Vy, (41)

where n is the number of occupied Landau levels. Then we immediately obtain quantized Hall conductivity:

σxy =
jx
Vy

=
ne2

h
. (42)

As magnetic field increases, the Landau level degeneracy D becomes larger, and fewer Landau levels will be
occupied. Hence n decreases with magnetic field. This (partially) explains Figure 1. (In real experiments,
the situation is more complicated. In fact, one needs not too weak disorder in the system in order to see
good integer quantum Hall effect, which is beyond our previous discussion. )
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