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1 Dirac Fermion as k · p Theory
Recall the tight-binding Hamiltonian of graphene:

H(k) =

(
0 −t

∑3
i=1 e

−ik·di

−t
∑3

i=1 e
ik·di 0

)
, (1)

where we have set the atomic energy E = 0 for simplicity. Around K/K ′ point the Brillouin zone, the
Hamiltonian can be expanded as

H(q) = vqxσx + vqyσy, (2)
where q ≡ k−K/K′. The Hamiltonians of form Eq. (2) are often referred to as k · p Hamiltonians, where k
refers to a vector of momentum p refers to a vector operators (here they are Pauli matrices). k·p Hamiltonians
are useful to study the low energy properties of solids.

The Hamiltonian of two-dimensional Dirac fermion can be generally written as

H(k) = vkxσx + vkyσy +mσz. (3)

In graphene, the Dirac fermion is massless m = 0. In boron nitride, the Dirac fermion has mass which is
half of the band gap. In the following, we will set v = 1 for simplicity.

The energy dispersion of Dirac fermion is

E±(k) = ±
√
k2x + k2y +m2. (4)

The (unnormalized) energy eigenstates are

ψ±(k) =

(
m±

√
k2x + k2y +m2

kx + iky

)
. (5)

Note that the gapped band structure when m > 0 cannot be continuously deformed to that when m < 0
without closing the band gap. It is usually said that these two band structures are in different phases.

Figure 1: Topological phase diagram of the two-dimensional Dirac fermion.
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2 Edge State from Domain Wall Problem
Due to the topologically in-equivalence of the two phases, there will be a localized edge state in the boundary
of two Dirac fermions of opposite masses.

Figure 2: Left: Geometry of the domain wall problem; Middle: Dispersion of the bulk band (blue) and the
edge state (green); Right: Localized wavefunction probability distribution.

Consider a domain wall problem of two semi-infinite planes separated by y = 0. The Hamiltonians within
each domain are Dirac fermions, whose fermion masses are of different signs. Formally, the Hamiltonian can
be written as

H = −i∂xσx − i∂yσy +m(y)σz, (6)
where

m(y) =M0θ(y)−M0θ(−y). (7)
θ(y) is the step function. We have set ℏ = 1 for simplicity. Without loss of generality we will also M0 > 0
in the following.

First notice that kx is still a good quantum number. The energy eigenstates should be of the form
ψ(x, y) = eikxψk(y). The eigenvalue problem then becomes

[kxσx − i∂yσy +m(y)σz]ψk(y) = Eψk(y), (8)

which can be more explicitly written as(
m(y) kx − i∂y

kx + i∂y −m(y)

)(
ψk,1

ψk,2

)
= E

(
ψk,1

ψk,2

)
. (9)

Within each domain, Eq. (9) is the same as the Dirac equation. So the solution is also of the same form as
Eq. (5), with ky to be determined by the boundary condition. In this way, we can write down the ansatz for
Eq. (9)

ψk(y) = c1

(
M0 ±

√
k2x − κ21 +M2

0

kx − κ1

)
e−κ1yθ(y) + c2

(
−M0 ±

√
k2x − κ22 +M2

0

kx + κ2

)
eκ2yθ(−y), (10)

where the κ1 ≡ −iky,1 and κ2 ≡ iky,2. c1 and c2 are normalization factors. In order for the wavefunction
to be normalizable: κ1, κ2 > 0. In order for the two solutions in the separate domains to give the same
energy eigenvalue E, we have

√
k2x − κ21 +M2

0 =
√
k2x − κ22 +M2

0 . This implies κ21 = κ22 ≡ κ2. Finally, the
wavefunction must be continuous along y = 0, thus

M0 ±
√
k2x − κ2 +M2

0

kx − κ
=

−M0 ±
√
k2x − κ2 +M2

0

kx + κ
. (11)
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It is not hard to verify the solution is κ = M0. When kx > 0 (kx < 0), the equation holds by taking the
minus (plus) sign. The energy dispersion of this state is E = −kx. The probability density of this state
decays exponentially away from the edge, thus the state is a localized edge state. The localization length is
ξ = 1/κ = 1/M0.

For a general functional form of m(y), the domain wall problem can still be solved by replacing e±κy to
e−

∫ y
0

m(y′)dy′ .
Experimentally, one domain is continuously connected to the vacuum, while another domain represents

the topologically non-trivial insulator. The edge state will be found at the surface of the material.
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