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1 Dirac Fermion as k- p Theory

Recall the tight-binding Hamiltonian of graphene:
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where we have set the atomic energy £ = 0 for simplicity. Around K/K' point the Brillouin zone, the
Hamiltonian can be expanded as
H(q> = VQy0y + Vqy0y, (2)

where q = k — K/K’. The Hamiltonians of form Eq. (E) are often referred to as k - p Hamiltonians, where k
refers to a vector of momentum p refers to a vector operators (here they are Pauli matrices). k-p Hamiltonians
are useful to study the low energy properties of solids.

The Hamiltonian of two-dimensional Dirac fermion can be generally written as

H(k) = vkyo, + vkyo, + mo,. (3)

In graphene, the Dirac fermion is massless m = 0. In boron nitride, the Dirac fermion has mass which is
half of the band gap. In the following, we will set v = 1 for simplicity.
The energy dispersion of Dirac fermion is

Ei(k) = £4/k2 + k2 +m?, (4)

The (unnormalized) energy eigenstates are
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Note that the gapped band structure when m > 0 cannot be continuously deformed to that when m < 0
without closing the band gap. It is usually said that these two band structures are in different phases.
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Figure 1: Topological phase diagram of the two-dimensional Dirac fermion.



2 Edge State from Domain Wall Problem

Due to the topologically in-equivalence of the two phases, there will be a localized edge state in the boundary
of two Dirac fermions of opposite masses.
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Figure 2: Left: Geometry of the domain wall problem; Middle: Dispersion of the bulk band (blue) and the
edge state (green); Right: Localized wavefunction probability distribution.

Consider a domain wall problem of two semi-infinite planes separated by y = 0. The Hamiltonians within
each domain are Dirac fermions, whose fermion masses are of different signs. Formally, the Hamiltonian can
be written as

H = —idy0, — 10y, + m(y)o,, (6)
where
m(y) = Mob(y) — Mob(—y). (7)

O(y) is the step function. We have set i = 1 for simplicity. Without loss of generality we will also My > 0
in the following.

First notice that k, is still a good quantum number. The energy eigenstates should be of the form
Y(x,y) = e*@r(y). The eigenvalue problem then becomes

(krow — i0yay +m(y)o:] Yr(y) = Evr(y), (8)

which can be more explicitly written as

ke +1i0y  —m(y) ) \Yr2 Vr2)
Within each domain, Eq. (E) is the same as the Dirac equation. So the solution is also of the same form as
Eq. (E), with &, to be determined by the boundary condition. In this way, we can write down the ansatz for

Eq. (9)
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where the k1 = —iky 1 and Ko = ik, 2. c1 and cy are normalization factors. In order for the wavefunction
to be normalizable: k1,k2 > 0. In order for the two solutions in the separate domains to give the same
energy eigenvalue F, we have \/k2 — 7 + MZ = \/k2 — k3 + MZ. This implies k? = x3 = x2. Finally, the
wavefunction must be continuous along y = 0, thus
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It is not hard to verify the solution is K = My. When k, > 0 (k, < 0), the equation holds by taking the
minus (plus) sign. The energy dispersion of this state is E = —k,. The probability density of this state
decays exponentially away from the edge, thus the state is a localized edge state. The localization length is
E=1/k=1/My.

For a general functional form of m(y), the domain wall problem can still be solved by replacing e**¥ to
e foq/ m(y")dy’ .

Experimentally, one domain is continuously connected to the vacuum, while another domain represents
the topologically non-trivial insulator. The edge state will be found at the surface of the material.
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