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In this recitation, we will introduce Ginzburg-Landau theory of superconductivity.

1 Ginzburg-Landau Free Energy
Ginzburg-Landau (GL) theory is a phenomenological theory for superconductivity. It was first proposed
by Ginzburg and Landau in 1950, way before the BCS microscopic theory (1957). It was later shown by
Gor’kov that one can deduce GL theory from BCS theory rigorously (1959).

The central ingredient of the theory is a pseudowavefunction ψ(r), whose magnitude |ψ(r)|2 is interpreted
as the local density of superconducting electrons ns(r).

Assume ψ is small and varies slowly in space. The free energy density of the whole system can be
expanded to the leading order of |ψ|2 and |∇ψ|2:
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where fn is the free energy of electrons in the normal state in the absence of the field, (∇ × A)2/(8π) is
the energy for the magnetic field, α and β are phenomenological parameters, m∗ is the effective mass and
e∗ = 2e is the effective charge. The configuration of ψ is such that the free energy is minimized. Note that
β > 0 otherwise the energy is unbounded from below.

Homogeneous Case Let us first consider the simple case when there is no magnetic field and spatial
gradients A = ∇ψ = 0. Then

f − fn = α|ψ|2 + β

2
|ψ|4. (2)

There are two scenarios:
• α > 0. The free energy minimum is located at ψ = 0, hence ns = 0. There is no superconducting

electron and thus T > Tc, where Tc is the superconducting phase transition temperature.

• α < 0. The free energy minimum is located at |ψ|2 = −α/β, which is f − fn||ψ|2=−α/β = −α2/(2β).
This belongs to the case when T < Tc. Note that in this way we can conclude the GL theory is a good
approximation near Tc because |ψ|2 is small.
Note that −α2/(2β) is the energy gain of having superconducting electrons. There is another energy
cost of repelling all the magnetic field out of the superconductor1. Whether the material is super-
conducting or not depends on which of the two energies are larger. Thus α2/(2β) ≡ H2

c /(8π) defines
a critical field. Large magnetic field H > Hc kills the superconductivity through a first order phase
transition.

1In fact, this argument is rather subtle. The proper thermodynamic potential to use in this context is the Gibbs free energy
G(T,H) instead of the Helmholtz free energy F (T,M). The state variables for Helmholtz free energy are temperature and
magnetism: dF = −SdT +HdM . However, in the experiments it is easier to control external field H (suppose magnetic field is
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In principle, both α and β are complicated functions of temperature T . Neat T = Tc, both α and β can
be expanded to the leading order of T − Tc:

α(t) =α1(t− 1), α1 > 0, (5)
β(t) =β0, β0 > 0, (6)

where t ≡ T/Tc. Then near Tc the density of superconducting electrons increases linearly: ns ∝ (1− t).
So far, this is exactly the Landau second order phase transition theory. The functional form of the free

energy is similar to that in the ferromagnetic-paramagnetic phase transition in the Ising model.

Inhomogeneous Case In order to minimize free energy in the general case, we take the variation of
F [ψ,ψ∗,A] =

∫
fdr over ψ∗ and A.

δF
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= 0. (7)

Let us first compute the first variation. It is helpful to integral by part and rewrite the kinetic energy as
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In this way, δF/δψ∗ = 0 becomes
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Note that it is nonlinear with respect to ψ due to the presence of β.
For the second variation, δF/δA = 0 becomes
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which is often rewritten into
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c

4π
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Here the first equality is just the Ampère’s circuital law. vs is the supercurrent velocity. If we rewrite
ψ = |ψ|eiφ, the supercurrent can be identified as
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)
. (14)

Equations (11) and (12) are nonlinear coupled differential equations, which is often called GL equations.
parallel to the surface of the superconductor, thus H is the same in and out of the superconductor) instead of the magnetism
M . It is thus convenient to use Gibbs free energy G = F − V BH/(4π), and dG = −SdT − MdH. Note that B = H + 4πM
and H is fixed constant.

In this way, the Gibbs free energy in the normal state is

Gn = V fn − V
H2

8π
− Vext

H2

8π
, (3)

where V is the volume of the system and Vext is the volume of the remaining space with magnetic field. In the superconducting
state,

Gs = V fn − V
H2

c

8π
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8π
, (4)

where we have used Eq. (2) for the second term. Then Gn −Gs = − V
8π

(
H2 −H2

c

)
, which is positive for H < Hc.
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2 Linearized Ginzburg-Landau Equation
Obviously, β|ψ|4/2 in the GL free energy is the origin of all the troubles. The linearized GL equation is
obtained by just dropping the β|ψ|2ψ term in Eq. (11). This approximation is only justified when αψ ≫
β|ψ|2ψ, which means |ψ|2 ≪ −α/β, i.e. the superconducting electron density is rather small.

Coherence Length With this approximation, Equation (11) becomes(
−i∇− 2πA

Φ0

)2

ψ = −2m∗α

ℏ2
ψ, (15)

where Φ0 ≡ hc/e∗ is the flux quantum. It is instructive to define the so-called “GL coherence length” or
“healing length”:

ξ ≡ ℏ√
−2m∗α

∝ 1√
1− t

. (16)

It is a characteristic length scale for variation of ψ. To see this, simply set A = 0. The solution of the
wavefunction is simply

ψ ∼ e±x/ξ. (17)
This means a small disturbance of ψ from its equilibrium will decay in a characteristic length of ξ. Coherence
length can be roughly understood as the size of the Cooper pair. It is quite large ξ ≈ 3000Å for typical
classical superconductors. Therefore, Cooper pair in metals is really loosely bonded in real space.

Bulk Nucleation Suppose a magnetic field H = H ẑ is applied to the superconductor. Its vector potential
can be chosen as Ay = Hx. The linearized GL equation becomes[
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Since the vector potential does not depend on y or z, we can separate variables: ψ = eikyyeikzzf(x). The
equation then becomes
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where x0 = kyΦ0/(2πH). This is exactly the Schrödinger equation for harmonic potentials (or Landau
levels), whose energy eigenvalues are
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which should be equated to ℏ2/(2m∗)(ξ−2 − k2z):
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Evidently, H is highest for n = 0 and kz = 0, beyond which the solution does not exist. This defines another
characteristic magnetic field

Hc2 =
Φ0

2πξ2
. (22)

The corresponding wavefunction is

f(x) = exp

[
− (x− x0)

2

2ξ2

]
, (23)

which is a Gaussian wavepacket at x0. This is called a superconducting vortex. The electrons are only
superconducting near the vortices.
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Two Types of Superconductors Depending on the relative ratio of Hc and Hc2, there are two types of
superconductors.

• Type I superconductors Hc2 < Hc. Starting from zero magnetic field and increase magnetic field, the
superconductivity is killed completely when H > Hc.

• Type II superconductors Hc2 > Hc. Starting from zero magnetic field and increase magnetic field, the
vortices appear when Hc2 > H > Hc. The superconductivity is completely killed only when H > Hc.

Figure 1: Left: Phase diagram of type II superconductors; Right: Vortices in high-Tc superconductors filmed
by scanning SQUID microscopy.
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