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1 Time Reversal Symmetry
1.1 Basic Properties
By definition, time reversal symmetry (TR) changes the arrow of time. Thus it will leave position operator
unchanged and reverse the momentum operator:

T x̂T−1 = x̂, T p̂T−1 = −p̂. (1)

This immediately implies that T is anti-unitary:

TiT−1 =
1

ℏ
T [x, p]T−1 =

1

ℏ
[x,−p] = −1

ℏ
[x, p] = −i. (2)

The most general form of an anti-unitary linear operator is T = UK, where U is unitary and K is the
complex conjugation. The form of U is actually highly restricted by noting that physically, applying T twice
to any state should result in the same state, with potentially an additional phase factor: T 2 = eiϕI. This
implies

T 2 = UKUK = UU∗ = U(UT )−1 = eiϕI, (3)

where we have used the factor that K2 = I and UU† = I. Then{
U = eiϕUT ,

UT = Ueiϕ.
⇒ U = eiϕUeiϕ = e2iϕU, (4)

which can only be satisfied when eiϕ = ±1. Thus

T 2 = ±I. (5)

The sign depends on the spin of the particle. T 2 = I for integer spin particles and T 2 = −I for half-integer
spin particles. We will only consider spinless particles in the following for simplicity.

1.2 TR Symmetry in Bloch Bands
Consider tight-binding approximation. Denote ĉi as the electron annihilation operator on site i. By definition,
we have T ĉiT

−1 = ĉi. Its effect in Bloch electrons can be computed as

T ĉiT
−1 = T

(
1√
N

∑
k

eik·Rj ĉk

)
T−1 =

1√
N

∑
k

e−ik·RjT ĉkT
−1 =

1√
N

∑
k

eik·Rj ĉk. (6)
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It is not hard to see that this equation can only be satisfied if

T ĉkT
−1 = ĉ−k. (7)

With this, let us derive the effect of T on the Bloch Hamiltonian H(k). Suppose the full Hamiltonian
has TR symmetry TĤT−1 = H. Then

TĤT−1 =T

(∑
k

ĉ†kH(k)ĉk

)
T−1 = T

(∑
k

ĉ†kT
−1TH(k)T−1T ĉk

)
T−1

=
∑
k

ĉ†−kTH(k)T−1ĉ−k =
∑
k

ĉ†kH(k)ĉk,

(8)

where we have inserted T−1T = I. This equation can only be satisfies when

TH(k)T−1 = H(−k). (9)

2 Local Stability of Dirac Fermions in Graphene
As an application of what we have developed so far, we will demonstrate that the Dirac fermion in the
graphene is protected by the TR symmetry and the inversion symmetry.

A B

Figure 1: Geometry of graphene.

Recall the Bloch Hamiltonian for the graphene is

H(k) =

(
0 t

∑
i e

ik·ai

t
∑

i e
−ik·ai 0

)
= t

∑
i

[σx cos(k · ai)− σy sin(k · ai)] , (10)

where t is the nearest neighbour (NN) hopping strength, ai, i = 1, 2, 3 are the NN vectors (Fig. 1), and σi,
i = x, y, z are Pauli matrices. The Hamiltonian is under the atomic orbitals on the A/B sublattice basis.

Suppose the electrons are spinless. In this case T = K. It is straightforward to check that

TH(k)T−1 = H∗(k) = H(−k). (11)

Thus the model has TR symmetry.
Apart from this symmetry, the model also has inversion symmetry. For example, one can choose the

inversion center to be at the center of the hexagon. Note that under the inversion, A/B sublattice becomes
B/A sublattice. The effect of the inversion operator I is then

Iĉi,A/BI
−1 = ĉ−i,B/A. (12)
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Following the same recipe in Eq. (7) and (9), one can deduce IHI−1 = H translates to

IH(k)I−1 = σxH(k)σx = H(−k), (13)

for Bloch Hamiltonians. It is also straightforward to check the model has inversion symmetry.
We claim that these two symmetries guarantee that the Dirac fermions at K/K′ points in the Brillouin

zone is stable. To show this, consider a generic two-band Bloch Hamiltonian

H(k) = d(k) · σ, (14)

with d(k) ≡ (dx(k), dy(k), dz(k)) and σ ≡ (σx, σy, σz). Suppose the Hamiltonian has both TR symmetry
and inversion symmetry so that both Eq. (11) and (13) are satisfied. It is straightforward to show that these
two equations imply the following restrictions on d(k):

dx(−k) = dx(k), dy(−k) = −dy(k), dz(k) = −dz(k) = 0. (15)

That is to say, with both TR symmetry and inversion symmetry, there can be at most be two Pauli matrices
in the Bloch Hamiltonian.

Then recall that the low energy Hamiltonians at K/K′ points are

H(K/K′ + κ) = v(κxσx ± κyσy). (16)

As long as these two symmetries are satisfied, there is no way to create a term like mσz to open up a gap
the Dirac fermion. All the small perturbations that satisfies the two symmetries1, will at most move the
position of the Dirac point away from K and K′. For example,

H(K+ κ) = v(κxσx ± κyσy) + axσx + ayσy, (17)

only shifts the Dirac point at K to K− a/v, a ≡ (ax, ay). This finishes the proof.
In boron nitride, the Dirac fermion is gapped because the inversion symmetry is broken, as A and B

sublattices are different atoms. It is also possible to open up the gap by breaking the TR symmetry. The
model was first proposed by Haldane in 1988 [1]. It turns out that the Haldane model has much richer
physics that is deeply connected the topology.
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1Large perturbations can indeed gap the Dirac fermion. For example, imagine the scenario when a/v is larger than the range
of the crystal momentum so that K− a/v is out of the Brillouin zone.
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