8.231 Physics of Solids I

Course Summary

Huitao Shen 12/12/17

Normal Metals at Low T

- Electrical resistivity
- Heat capacity
- Magnetic susceptibility

Drude Model (1900)

Assumptions:

- No el-ph interaction
- No el-el Coulomb interaction, only collisions characterized by τ
- Electrons are classical, obey Maxwell-Boltzmann dist.

$$\frac{d\mathbf{p}}{dt} = -e\left(\mathbf{E} + \frac{\mathbf{p}}{m} \times \mathbf{B}\right) - \frac{\mathbf{p}}{\tau}$$

Drude Model (1900)

Successes:

- DC Electrical Conductivity $\sigma_0 = \frac{ne^2\tau}{m}$
- AC Electrical Conductivity (Pset 1) $\sigma = \frac{\sigma_0}{1 i\omega\tau}$
- Hall Conductivity $R_H \equiv \frac{E_y}{BJ_x} = -\frac{1}{ne}$
- Thermal Conductivity (Rec 1) $\kappa = \frac{1}{3}cmv^2$
- Widemann-Franz Law $\frac{\kappa}{\sigma T} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2$ (by chance!)

Sommerfeld Model (1928)

Maxwell-Boltzmann dist. — Fermi-Dirac dist.

$$\kappa = \frac{1}{3}cmv^2$$

	С	v
M-B	$\frac{3}{2}nk_B$	$\frac{mv^2}{2} = \frac{3k_BT}{2}$
F-D	$\sim D(E_F)k_BT$	$\frac{mv_F^2}{2} = E_F$

Sommerfeld Model (1928)

Successes:

- Linear Heat Capacity $c \sim k_B TD(E_F)$
- Pauli Paramagnetism (Pset 3) $\chi \equiv \frac{\partial M}{\partial H} = \mu_B^2 D(E_F)$

Density of States

Density of states at the Fermi energy is the "DNA" of metals!

- Heat Capacity $c \sim k_B TD(E_F)$
- Pauli Paramagnetism (Pset 3) $\chi \equiv \frac{\partial M}{\partial H} = \mu_B^2 D(E_F)$
- Binding Energy of Cooper Pair (Pset 8)

$$E_B \sim \hbar \omega_D \exp\left(\frac{2}{gD(E_F)}\right)$$

Normal Metals at Low T

• Electrical resistivity impurity el-el (Fermi Liquid) $\rho(T) = \begin{cases} \rho_0 + \gamma T^2 + \beta T^5, & T < T_D, \\ \alpha T, & \uparrow & T > T_D. \end{cases}$

• Heat capacity

$$c(T) = \begin{cases} \gamma T + \beta T^3, & T < T_D, \\ \frac{3}{2}k_B, & T > T_D. \end{cases}$$

Magnetic susceptibility

 $\chi(T) \sim \text{const.}$

Periodic Potential

How to deal with the periodic structure?

Fourier transform!

Reciprocal Lattice

 (Mathematically) Constitute all possible Fourier components;

$$V(\mathbf{r}) = \sum_{\mathbf{G}} V(\mathbf{G}) e^{i\mathbf{G}\cdot\mathbf{r}}, \ \mathbf{G} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$$

- (Geometrically) Specify all lattice planes;
- (Physically) Specify all possible X-ray diffractions through conservation of crystal momentum.

X-ray Diffraction (XRD)

• Laue condition (conservation of crystal momentum)

$$\Delta \mathbf{k} = \mathbf{G}$$

• Bragg condition (elastic scattering) $2d\sin\theta = n\lambda$

X-ray Diffraction (XRD)

powder

single crystal

Bloch Theorem

$$\left(-\frac{\hbar^2 \nabla^2}{2m} + V(\mathbf{r})\right)\Psi = E\Psi \qquad V(\mathbf{r} + \mathbf{R}) = V(\mathbf{r})$$

"When I started to think about it, I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal.... By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation."

$$\Psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r}), \quad u_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R})$$
$$H\Psi_{n\mathbf{k}} = E_n(\mathbf{k})\Psi_{n\mathbf{k}}, \quad E_n(\mathbf{k}) = E_n(\mathbf{k}+\mathbf{G})$$

Band Structure

$$\Psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$
$$u_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r} + \mathbf{R})$$

$$H\Psi_{n\mathbf{k}} = E_n(\mathbf{k})\Psi_{n\mathbf{k}}$$
$$E_n(\mathbf{k}) = E_n(\mathbf{k} + \mathbf{G})$$

Band Structure

Exact Solvable Models
Kronig–Penney model (1D periodic square potential)

Perturbative Models

$$\left(-\frac{\hbar^2 \nabla^2}{2m} + V(\mathbf{r})\right)\Psi = E\Psi$$

- Tight-binding model (zero kinetic energy limit)
- Nearly-free electron model (zero potential energy limit)

Tight-binding Model

- Assume weak kinetic energy, treated perturbatively
- Gradually decrease interatomic spacing

Tight-binding Model

Tight-binding Model

Nearly-free Electron Model

- Assume weak periodic potential, treated perturbatively
- Works well for good metals (IA, IIA)

Non-degenerate perturbation theory:

$$E(k) = E^{0}(k) + \langle k | V(x) | k \rangle + \sum_{k'} \frac{|\langle k | V(x) | k' \rangle|^{2}}{E^{0}(k) - E^{0}(k')}$$

Near the boundary, needs degenerate perturbation theory:

depends on

$$\Delta k \equiv 2\pi/L \qquad \qquad E(k_0) = E^0(k_0) \pm |V(G)|$$

Nearly-free Electron Model

 $E(k_0) = E^0(k_0) \pm |V(G)|$

Nearly-free Electron Model

$$V(\mathbf{r}) = -V_0 \left[\cos\left(\frac{2\pi x}{a}\right) + \cos\left(\frac{2\pi y}{a}\right) \right]$$

 $k_y a$

 $V_0 = 0$

small V_0

 $k_r a$

Applications of Band Theory

Topological Insulators

(Rec 6, 9)

Band Structure Measurement

- Angle-resolved photoemission spectroscopy (ARPES)
- Quantum oscillations

$$E_k = \hbar\omega - E_b - \phi$$

ARPES

LETTERS PUBLISHED ONLINE: 10 MAY 2009 | DOI: 10.1038/NPHYS1274 nature physics

Observation of a large-gap topological-insulator class with a single Dirac cone on the surface

Y. Xia^{1,2}, D. Qian^{1,3}, D. Hsieh^{1,2}, L. Wray¹, A. Pal¹, H. Lin⁴, A. Bansil⁴, D. Grauer⁵, Y. S. Hor⁵, R. J. Cava⁵ and M. Z. Hasan^{1,2,6}*

- Oscillation of magnetization (de Haas-van Alphen effect) (Pset 7)
- Oscillation of resistivity (Shubnikov-de Haas effect)
- ...

Landau Levels

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_c$$

3D: Landau Tubes

Two scenarios:

- Fix particle number
- Fix chemical potential

$$\Delta\left(\frac{1}{B}\right) = \frac{2\pi}{A_e}$$

 A_e

- 2D: Area of the Fermi surface
- 3D: Area of the extremum orbital

Quantum Hall Effect

Quantum Hall Effect

- Quantized conductivity comes from edge states
- Impurity is necessary to kill bulk conductance

Variance of QHE

 Half-integer quantum Hall effect (graphene)

 Quantum anomalous Hall effect (ferromagnetic topological insulator)

Magnetism

Sources of magnetism:

- Spin magnetic moment: Pauli paramagnetism
- Orbital magnetic moment: Quantum oscillations

Magnetism

Most common magnetic response: $M = \chi H$

- Paramagnetism $\chi > 0$
 - Local moment: Curie paramagnetism $\chi = \frac{C}{T}$
 - Itinerant electron: Pauli paramagnetism
- Diamagnetism $\chi < 0$
 - Landau diamagnetism

Diamagnetism

$$U = -\mathbf{M} \cdot \mathbf{B} = -\chi \mathbf{B} \cdot \mathbf{B}$$

local minimum only when $\chi < 0$

Diamagnetic Levitation 2000 Ig Nobel Prize, Andre Geim Also 2010 Nobel Prize for graphene

Magnetism

- Paramagnetism
- Diamagnetism
- Ferromagnetism

Ising Model

$$H = J \sum_{\langle i,j \rangle} \sigma_i \sigma_j$$

Beyond Band Theory

- Mott insulator (el-el interaction)
- Superconductivity (el-ph interaction)
- •

Mott Insulator

Mott Insulator

Mott Insulator

Neel State

Beyond Band Theory

- Mott insulator (el-el interaction)
- Superconductivity (el-ph interaction)

Defining properties of superconductivity:

- Zero electrical resistivity
- Perfect diamagnetism (Meissner effect)

distinguish superconductors from perfect conductors

London equations (1935, Phenomenological, Classical)

$$\frac{\partial \mathbf{J}_s}{\partial t} = \frac{n_s e^2}{m^*} \mathbf{E}$$
$$\nabla \times \mathbf{J}_s = -\frac{n_s e^2}{m^* c} \mathbf{B}$$

 Ginzburg-Landau theory (1950, Phenomenological, Quantum, Rec 8)

$$f = f_n + \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{1}{2m^*} \left| \left(-i\hbar\nabla - \frac{e^*}{c} \mathbf{A} \right) \psi \right|^2 + \frac{(\nabla \times \mathbf{A})^2}{8\pi}$$

- Cooper pair problem (1956, Pset 8)
- Bardeen-Cooper-Schrieffer theory (1957, Microscopic)

- Isotope effect (1950): related to phonons
- Heat capacity (1956): superconducting state has a gap

Josephson Effect

An example of macroscopic quantum phenomenon!

- Bose-Einstein Condensation
- Superfluidity

High T_c Superconductivity

Year

High T_c Superconductivity

- Superconducting phase can be well-described by a 2D, type-II superconductor. Still has Cooper pair.
- But what is the pairing mechanism? Cannot be el-ph interaction as the Debye temperature is so low.
- Even more mysterious pseudogap phase:
 - Gap above critical temperature
 - Linear resistivity in temperature
 - ...

Applications of SC

- Magnetometer (SQUID)
- Superconducting qubits
- Superconducting electromagnets

Beyond Band Theory

- Mott insulator (el-el interaction)
- Superconductivity (el-ph interaction)
- Fractional quantum Hall effect (el-el interaction)
- Kondo effect (el-impurity & el-el interaction)

paperscape.org

More is Different!